
Brief books for people who make websites No.

4

RESPONSIVE
WEB DESIGN

Ethan Marcotte

foreword by Jeremy Keith

RESPONSIVE
WEB DESIGN

Ethan Marcotte

Copyright © 2011 by Ethan Marcotte

All rights reserved

Publisher: Je)rey Zeldman

Designer: Jason Santa Maria

Editor: Mandy Brown

Technical Editor: Dan Cederholm

Copyeditor: Krista Stevens

Compositor: Neil Egan

ISBN 978-0-9844425-7-7

A Book Apart

New York, New York

http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://abookapart.com

TABLE OF CONTENTS

chapter 1

Our Responsive Web1
chapter 2

The Flexible Grid1 3
chapter 3

Flexible Images42
chapter 4

Media Queries

chapter 5

Becoming Responsive

64

106

140

142

Acknowledgements

Resources

References

Index

1 44

14 7

FOREWORD

Language has magical properties. The word “glamour”—
which was originally a synonym for magic or spell-casting—
has its origins in the word “grammar.” Of all the capabilities of
language, the act of naming is the most magical and powerful
of all.

The short history of web design has already shown us the
transformative power of language. Je)rey Zeldman gave us
the term “web standards” to rally behind. Jesse James Garrett
changed the nature of interaction on the web by minting the
word “Ajax.”

When Ethan Marcotte coined the term “responsive web
design” he conjured up something special. The technologies
existed already: *uid grids, *exible images, and media queries.
But Ethan united these techniques under a single banner, and
in so doing changed the way we think about web design.

Ethan has a way with words. He is, of course, the perfect
person to write a book on responsive web design. But he has
done one better than that: he has written the book on respon-
sive web design.

If you’re hoping for a collection of tricks and tips for add-
ing a little bit of super+cial *air to the websites that you build,
then keep looking, my friend. This little beauty operates at a
deeper level.

When you’ve +nished reading this book (and that won’t
take very long) take note of how you approach your next proj-
ect. It’s possible that you won’t even notice the mind-altering
powers of Ethan’s words, delivered, as they are, in his light-
hearted, entertaining, sometimes downright hilarious style;
but I guarantee that your work will bene+t from the presti-
digitation he is about to perform on your neural pathways.

Ethan Marcotte is a magician. Prepare to be spellbound.

—Jeremy Keith

 1

OUR RESPONSIVE
WEB

Something there is that doesn’t love a wall . . . ”
—robert frost, “Mending Wall”

as i begin writing this book, I realize I can’t guarantee
you’ll read these words on a printed page, holding a tiny pa-
perback in your hands. Maybe you’re sitting at your desk with
an electronic copy of the book up on your screen. Perhaps
you’re on your morning commute, tapping through pages on
your phone, or swiping along on a tablet. Or maybe you don’t
even see these words as I do: maybe your computer is simply
reading this book aloud.

Ultimately, I know so little about you. I don’t know how
you’re reading this. I can’t.

Publishing has +nally inherited one of the web’s central
characteristics: *exibility. Book designer and publisher Craig
Mod believes that his industry is quickly entering a “post-
artifact” phase (http://bkaprt.com/rwd/1/), that the digital age is
revising our de+nition of what constitutes a “book.”

1
“

OUR RESPONSIVE WEB

http://bkaprt.com/rwd/1/

 2 RESPONSIVE WEB DESIGN

Of course, web designers have been grappling with this for
some time. In fact, our profession has never had an “artifact”
of its own. At the end of the day, there isn’t any thing produced
by designing for the web, no tangible objects to hold, to cher-
ish, to pass along to our children. But despite the oh-so-ethe-
real nature of our work, the vocabulary we use to talk about it
is anything but: “masthead,” “whitespace,” “leading,” even the
much-derided “fold.” Each of those words is directly inherited
from print design: just taken down from the shelf, dusted o),
and re-applied to our new, digital medium.

Some of that recycling is perfectly natural. We’re creatures
of habit, after all: as soon as we move into a new city, or start
a new job, we’re mapping previous experiences onto the new,

fig 1.1: The canvas, even a blank one, provides a boundary for an artist’s work. (Photo by
Cara StHilaire: http://bkaprt.com/rwd/2/)

http://bkaprt.com/rwd/2/

 3 OUR RESPONSIVE WEB

more foreign one, using them to gradually orient ourselves.
And since the web is a young medium, it’s only natural to bor-
row some terms from what we know: graphic design provides
us with a rich history that spans centuries, and we’d be remiss
not to use its language to help shape our industry.

But our debt to print goes much deeper than language. In
fact, there’s another concept we’ve borrowed, one we might
not acknowledge all that often: the canvas (fig 1.1).

In every other creative medium, the artist begins her work
by selecting a canvas. A painter chooses a sheet of paper or
fabric to work on; a sculptor might select a block of stone
from a quarry. Regardless of the medium, choosing a canvas is
a powerful, creative act: before the +rst brush stroke, before
striking the chisel, the canvas gives the art a dimension and
shape, a width and a height, establishing a boundary for the
work yet to come.

On the web, we try to mimic this process. We even call
it the same thing: we create a “canvas” in our favorite image
editor, a blank document with a width and height, with di-
mension and shape. The problem with this approach is that
we’re one step removed from our actual canvas: the browser
window, and all of its inconsistencies and imperfections (fig
1.2). Because let’s face it: once they’re published online, our
designs are immediately at the mercy of the people who view

fig 1.2: The browser window, our true canvas. (For better or worse.)

 4 RESPONSIVE WEB DESIGN

them—to their font settings, to the color of their display, to
the shape and size of their browser window.

So in the face of all that uncertainty, that *exibility, we
begin by establishing constraints: we set our type in pixels,
or create +xed-width layouts that assume a minimum screen
resolution. Establishing those constraints is a bit like selecting
a canvas—they give us known parameters to work from, cer-
tainties that help quarantine our work from the web’s inher-
ent *exibility.

But the best thing—and often, the worst thing—about the
web is that it de+es easy de+nition. If I was feeling especially
bitter, I’d even go so far as to say it revels in its ability to shrug
o) whatever constraints we place around it. And the param-
eters we place on our designs are no di)erent: they’re easily
broken. If a browser drops even slightly below our expected
minimum width (fig 1.3), a site’s visitor might +nd her reading

fig 1.3: Deviating slightly from our “ideal” parameters can negatively impact the user…

 5 OUR RESPONSIVE WEB

experience is altered by a horizontal scrollbar and clipped
content. But our businesses and clients could be a)ected as
well (fig 1.4): by relying on a minimum screen resolution, the
placement of critical links or elements can be incredibly frag-
ile, clipped by a viewport that obeys the user’s preferences,
not ours.

FASTEN THOSE SEATBELTS

Over a decade ago, John Allsopp wrote “A Dao of Web Design”
(http://bkaprt.com/rwd/3/), an article that, if you haven’t read
it, you should absolutely check out now. (Seriously. I’ll wait.)
It’s easily my favorite essay about designing for the web, and
it’s just as relevant today as it was when it was +rst written.
John argues that

[t]he control which designers know in the print medium, and
often desire in the web medium, is simply a function of the
limitation of the printed page. We should embrace the fact that
the web doesn’t have the same constraints, and design for this
!exibility. But "rst, we must “accept the ebb and !ow of things.”

Now, John was writing during the web’s early years, a pe-
riod of transition when designers transferred print-centered
design principles onto this young, new medium. But much

fig 1.4: …or our businesses and clients. (What’s a “reg,” you ask? That’s the “Register Now”
link, hidden from view.)

http://bkaprt.com/rwd/3/

 6 RESPONSIVE WEB DESIGN

of what he wrote ten years ago still rings true today. Because
the web has never felt more in *ux, more variable than it does
right now.

After all, we’ve been entering our own transition period
for some time. We’re now faced with a browser landscape
that’s become increasingly untethered from the desktop, with
devices becoming smaller and larger simultaneously. Small-
screen devices are estimated to become the dominant form
of web access in a matter of years (http://bkaprt.com/rwd/4/),
while modern game consoles have made a widescreen, tele-
vision-centric web more readily accessible. Tablet computing
has become wildly popular of late, presenting us with a mode
of web access that is neither fully “mobile” nor “desktop,” but
somewhere in between.

The long and short of it is that we’re designing for more de-
vices, more input types, more resolutions than ever before. The
web has moved beyond the desktop, and it’s not turning back.

Unfortunately, our early attempts at designing beyond the
desktop have felt pretty similar to our old approaches, apply-
ing constraints in the face of uncertainty. A few months ago,
a friend emailed me a link to an article she’d just read on her
phone:

http://www.bbc.co.uk/news/mobile/science-
environment-13095307

See the /mobile/ directory? The site’s owners had quaran-
tined the “mobile experience” on a separate URL, assuming a
page width of 320 pixels. But whenever that link is shared on
Twitter, Facebook, or via email, visitors will be locked into
that small-screen friendly view, regardless of the device they
use to read it. And speaking for myself, the reading experience
was, well, awful on a desktop browser.

That’s not to say that mobile websites are inherently
*awed, or that there aren’t valid business cases for creating
them. But I do think fragmenting our content across di)erent
“device-optimized” experiences is a losing proposition, or at
least an unsustainable one. As the past few years have shown

http://www.bbc.co.uk/news/mobile/science-environment-13095307
http://bkaprt.com/rwd/4/
http://www.bbc.co.uk/news/mobile/science-environment-13095307

 7

us, we simply can’t compete with the pace of technology. Are
we really going to create a custom experience for every new
browser or device that appears?

And if not, what’s the alternative?

RESPONSIVE ARCHITECTURE

I’ve been an amateur fan of architecture for as long as I can re-
member. And as a web designer, there’s something appealing
about the number of constraints that architects seem to enjoy:
from sketch to schematic, from foundation to façade, every
step of the architectural process is more permanent than
the one that preceded it. In Parentalia, the English architect
Christopher Wren wrote that “architecture aims at eternity,”
and there’s something to that: an architect’s creative decisions
will stand for decades, perhaps centuries.

After a day spent cursing at Internet Explorer, that kind of
constancy sounds really, really nice.

But in recent years, a relatively new design discipline called
“responsive architecture” has been challenging some of the
permanence at the heart of the architectural discipline. It’s a
very young discipline, but this more interactive form has al-
ready manifested itself in several interesting ways.

Artists have experimented with surfaces that react to your
voice with a music of their own (http://bkaprt.com/rwd/5/),
and with living spaces that can reform themselves to better +t
their occupants (http://bkaprt.com/rwd/6/). One company has
produced “smart glass technology” that can become opaque
once a room’s occupants reaches a certain density threshold,
a)ording them an additional layer of privacy (fig 1.5). And by
combining tensile materials and embedded robotics, a German
design consultancy has created a “wall” that can bend and *ex
as people approach it, potentially creating more or less space
as the size of the crowd requires (fig 1.6).

Rather than creating spaces that in*uence the behavior of
people that pass through them, responsive designers are in-
vestigating ways for a piece of architecture and its inhabitants
to mutually in*uence and inform each other.

OUR RESPONSIVE WEB

http://bkaprt.com/rwd/5/
http://bkaprt.com/rwd/6/

 8 RESPONSIVE WEB DESIGN

THE WAY FORWARD

What’s fascinating to me is that architects are trying to over-
come the constraints inherent to their medium. But web
designers, facing a changing landscape of new devices and
contexts, are now forced to overcome the constraints we’ve
imposed on the web’s innate *exibility.

We need to let go.
Rather than creating disconnected designs, each tailored to

a particular device or browser, we should instead treat them
as facets of the same experience. In other words, we can craft
sites that are not only more *exible, but that can adapt to the
media that renders them.

In short, we need to practice responsive web design. We
can embrace the *exibility inherent to the web, without sur-
rendering the control we require as designers. All by embed-
ding standards-based technologies in our work, and by mak-
ing a slight change in our philosophy toward online design.

fig 1.5: Now you see it, now you don’t: smart glass can be con.gured to become opaque
automatically (http://bkaprt.com/rwd/7/).

http://bkaprt.com/rwd/7/

 9

The ingredients

So what does it take to create a responsive design? Speaking
purely in terms of front-end layout, it takes three core
ingredients:

1. A !exible, grid-based layout,
2. Flexible images and media, and
3. Media queries, a module from the CSS3 speci+cation.

In the next three chapters, we’ll look at each in turn—the
*exible grid, *uid images and media, and CSS3 media que-
ries—creating a more *exible, more responsive approach to
designing for the web. As we do so, we’ll have created a design
that can adapt to the constraints of the browser window or
device that renders it, creating a design that almost responds to
the user’s needs.

fig 1.6: It doesn’t just make for an attractive art installation. This wall can actually detect
your presence, and reshape itself to respond to your proximity (http://bkaprt.com/rwd/8/).

OUR RESPONSIVE WEB

http://bkaprt.com/rwd/8/

 10 RESPONSIVE WEB DESIGN

But before we dive in, I should probably come clean: I’m
a bit of a science +ction nut. I love me some laser pistols,
androids, and *ying cars, as well as movies and television
shows containing copious amounts thereof. And I don’t much
care about the quality of said shows and movies, honestly.
Whether directed by Kubrick or sporting a budget lower than
what I paid for lunch, I’ll watch it: just make sure there’s at
least one rocket ship, and I’m happy.

In all the sci-+ I’ve watched, good or bad, there’s a narrative
device that genre writers really seem to love: the secret ro-
bot. I’m sure you’ve come across yarns like this before. They
always start with a plucky band of adventurers trying to over-
come some faceless evil, lead by some upstanding hero type,
armed with pithy one-liners and/or steely resolve. But lurking
somewhere within their ranks is . . . a secret robot. (Cue ominous
music.) This devious, devilish device is an unfeeling being,
wrought from cold steel and colder calculations, but made to
look like a human, and it has a decidedly nefarious purpose:
to take our band of heroes down from the inside.

The revelation of the secret robot is where the story gets
most of its drama. You know the hero, and you know the ro-
botic spy, sure. But among the rest of the characters, you’re
always left asking yourself: who is, and who isn’t, a robot?

Personally, I’ve never understood why this is so hard. Me,
I miss the days of Johnny 5 and C-3PO, when you knew a
robot by just looking at it, with none of this “skulking around
in synthetic skin” nonsense. So I’ve taken matters into my
own hands: to clear up some of this confusion, I’ve designed a
simple little site called “Robot or Not” (fig 1.7). It’s intended to
help us identify who exactly is, and is not, a robot. To help us
better tell *eshy friend from ferrous foe.

Okay, maybe I’m the only one who has this problem.
But regardless of how useful this site will actually be, we’ll

use its modest little design to demonstrate exactly how a
responsive site is built. Over the next few chapters, we’ll be
developing Robot or Not together, using *exible grids, *exible
images, and media queries.

 11

fig 1.7: The design for Robot
or Not, in all its beeping,
bitmappy glory.

OUR RESPONSIVE WEB

 12 RESPONSIVE WEB DESIGN

Now, maybe you’re not one for suspense. Or, more
likely, maybe you’re already tired of hearing me blather
on at length, and just want to see the +nished product. If
that’s the case, then simply point your browser to http://
responsivewebdesign.com/robot/, and feel free to kick the
tires a bit.

Still here? Great. Let’s get started.

http://responsivewebdesign.com/robot
http://responsivewebdesign.com/robot

 13

when i was in college, a professor once told me that every
artistic movement—whether musical, literary, or from the +ne
arts—could be seen as a response to the one that preceded it.
Filmmakers of the sixties produced Bonnie and Clyde and The
Graduate to counter such old Hollywood pictures as The Sound
of Music. In Paradise Lost, John Milton actually writes his liter-
ary predecessors into the backdrop of hell—a not-so-subtle
dig at their poetic street cred. And if it wasn’t for the tight ar-
rangements of Duke Ellington and Benny Goodman, Charlie
Parker might never have produced the wild-eyed experimen-
tation of bebop.

One artist establishes a point; another sets the coun-
terpoint. And this was especially true for the artists of the
Modernist period in the mid-20th century. The Modernists
were looking at the creative output of their predecessors,
the Romantic period of the late 19th century, with, well, a
little disdain. To them, Romantic art was just laden down
with all this stu!—needless, embellished ornamentation that

2 THE FLEXIBLE
GRID

THE FLEXIBLE GRID

 14 RESPONSIVE WEB DESIGN

overwhelmed the artwork, and impeded its ability to properly
communicate with the viewer (fig 2.1).

Now, the Modernist reaction to this took many di)erent
forms, spanning nearly every artistic medium. In painting,
this meant reducing works to experiments in line, shape, and
color. But graphic designers of the period, like Jan Tschichold,
Emil Ruder, and Josef Müller-Brockmann, popularized this
concept of a typographic grid: a rational system of columns
and rows, upon which modules of content could be placed
(fig 2.2). And thanks to designers like Khoi Vinh and Mark
Boulton, we’ve managed to adapt this old concept to the needs
of contemporary web design.

In his book Grid Systems in Graphic Design, Müller-
Brockmann referred to this process as “creating a typographic
space on the page,” tailoring the proportions of the grid to the
size of a blank piece of paper. But for a web designer, we’re
missing one key component: the presence of an actual page.
Our canvas, the browser window, can bend and *ex to any
shape or size, whether changed at the whim of the reader, or
+xed by the phone or tablet they’re using to view our content.

Often, the +rst layer of our grid-based layouts looks
like this:

fig 2.1: The Modernists heralded a shift away from the embellished realism of William
Blake and Eugène Delacroix, to the more rational approach of Hans Hofmann and Josef
Müller-Brockmann.

 15

#page {

 width: 960px;

 margin: 0 auto;

}

We create an element in our markup, give it a +xed width
in our CSS, and center it in the page. But when we’re think-
ing *exibly, we instead need to translate a design created in
Photoshop (fig 2.3) into something more *uid, something
more proportional.

How do we begin?

FLEXIBLE TYPESETTING

To +nd an answer, let’s do a little role-playing. No, no—you
can put away those twenty-sided dice. I had something a bit
more practical (and a bit less orc-enabled) in mind.

fig 2.2: When tailored to the needs of your content as well as the page’s dimensions, the
typographic grid is a powerful tool, aiding designer and reader alike.

THE FLEXIBLE GRID

 16 RESPONSIVE WEB DESIGN

fig 2.3: Our PSD is looking
pretty, but that grid’s more
than slightly pixel-heavy.
How can we become more
/exible?

 17

Pretend for a moment that you’re working as a front-end
developer. (If you’re already a front-end developer, well,
pretend you’re also wearing a pirate hat.) A designer on your
team has asked you to convert a simple design into markup
and CSS. Always game to help out, you take a quick look at
the PSD she sent you (fig 2.4).

There’s not much content here, true. But hey—even short
jobs require close attention to detail, so you begin focusing
on the task at hand. And after carefully assessing the content
types in the mockup, here’s the HTML you come up with:

<h1>Achieve sentience with Skynet! Read More

»</h1>

A headline with a link embedded in it—a +ne foundation of
semantic markup, don’t you think? After dropping in a reset
stylesheet, the content begins shaping up in your browser (fig
2.5).

It’s de+nitely a modest start. But with our foundation in
place, we can begin adding a layer of style. Let’s start by apply-
ing some basic rules to the body element:

body {

 background‐color: #DCDBD9;

fig 2.4: The mockup for our typesetting exercise. This should take, like, minutes.

THE FLEXIBLE GRID

 18 RESPONSIVE WEB DESIGN

 color: #2C2C2C;

 font: normal 100% Cambria, Georgia, serif;

}

Nothing too fancy: We’re applying a light gray background
color (#DCDBD9) to our entire document, and a fairly dark text
color (#2C2C2C). And +nally, we’ve dropped in the font charac-
teristics: a default weight (normal) and a serif-heavy font stack
(Cambria, Georgia, serif).

Finally, you’ve probably noticed that the font‐size has
been set to 100%. In doing so, we’ve simply set our base type
size to the browser’s default, which in most cases is 16 pixels.
We can then use ems to size text up or down from that rela-
tive baseline. But before we do, we can see that our headline’s
starting to shape up (fig 2.6).

Wondering why the h1 doesn’t look, well, headline-y?
We’re currently using a reset stylesheet, which overrides
a browser’s default styles for HTML elements. It’s a handy
way to get all browsers working from a consistent baseline.
Personally, I’m a big fan of Eric Meyer’s reset (http://bkaprt.
com/rwd/9/), but there are dozens of +ne alternatives out
there.

At any rate, that’s why our h1 looks so small: it’s simply
inheriting the font‐size of 100% we set on the body element,
and rendering at the browser’s default type size of 16 pixels.

fig 2.5: Plain, style-free markup. The stu0 dreams (and websites) are made of.

http://bkaprt.com/rwd
http://bkaprt.com/rwd/9/

 19

Now, if we were content with pixels, we could just trans-
late the values from the comp directly into our CSS:

h1 {

 font‐size: 24px;

 font‐style: italic;

 font‐weight: normal;

}

h1 a {

 color: #747474;

 font: bold 11px Calibri, Optima, Arial, sans‐serif;

 letter‐spacing: 0.15em;

 text‐transform: uppercase;

 text‐decoration: none;

}

And that would be +ne—there’s nothing actually wrong with
setting your type in pixels. But for the purposes of our relative
typesetting experiment, let’s instead start to think proportion-
ally, and express those pixel-based font‐size values in rela-
tive terms. So instead of pixels, we’ll use our friend the em.

Contextual healing

To do so, we’ll need to do a teensy bit of math: we’ll simply

fig 2.6: With one simple CSS rule, we can set some high-level parameters for our design.

THE FLEXIBLE GRID

 20 RESPONSIVE WEB DESIGN

take the target font size from our comp, and divide it by the
font‐size of its containing element—in other words, its con-
text. The result is our desired font-size expressed in relative,
oh-so-*exible ems.

In other words, relative type sizes can be calculated with
this simple formula:

target ÷ context = result

(Quick aside: If you’re at all like me, the word “math” causes
immediate and serious panic. But speaking as someone who
took a philosophy course for his college math credit, don’t
run screaming into the hills quite yet. I rely on my computer’s
calculator program heavily, and simply paste the result into
my CSS. That keeps me from really having to, you know, do
the math.)

So with our formula in hand, let’s turn back to that 24px
headline. Assuming that our base font‐size: 100% on the
body element equates to 16px, we can plug those values
directly into our formula. So if we need to express our h1’s
target font size (24px) relative to its context (16px), we get:

24 ÷ 16 = 1.5

And there we are: 24px is 1.5 times greater than 16px, so our
font-size is 1.5em:

h1 {

 font‐size: 1.5em; /* 24px / 16px */

 font‐style: italic;

 font‐weight: normal;

}

And voilà! Our headline’s size perfectly matches the size speci-
+ed in our comp, but is expressed in relative, scaleable terms
(fig 2.7).

(I usually put the math behind my measurements in a com-
ment to the right-hand side of the line (/* 24px / 16px */),

 21

which makes future adjustments much, much easier for me to
make.)

With that squared away, let’s turn to our lonely little “Read
More” link. Actually, as you can see in figure 2.7, it’s not so
little—and that’s the problem. Sized in our comp (fig 2.4) at 11
pixels in a generously kerned sans-serif, we need to scale the
text down. A lot. Because at the moment, it’s simply inheriting
the font‐size: 1.5em set on its containing element, the h1.

And that’s important to note. Because the headline’s text
is set at 1.5em, any elements inside that headline need to be
expressed in relation to that value. In other words, our context
has changed.

So to set the font‐size of our link in ems, we’ll divide our
target of 11px not by 16px, the value set on the body, but by
24px—the font size of the headline, our new context:

11 ÷ 24 = 0.458333333333333

After that little division we’re left with one of the least sexy
numbers you’ve probably seen yet today. (Oh, but just you
wait: the chapter’s not over yet.)

Now, you might be tempted to round 0.45833333333333em
to the nearest sane-looking number—say, to 0.46em. But don’t
touch that delete key! It might make your eyes bleed to look

fig 2.7: Our headline is properly sized with /exible, scaleable ems. (But what the heck is up
with that link?)

THE FLEXIBLE GRID

 22 RESPONSIVE WEB DESIGN

at it, but 0.458333333333333 perfectly represents our desired
font size in proportional terms. What’s more, browsers are
perfectly adept at rounding o) those excess decimal places as
they internally convert the values to pixels. So giving them
more information, not less, will net you a better result in the
end.

In the spirit of accuracy, we can just drop that homely-
looking number directly into our CSS (line wraps marked »):

h1 a {

 font: bold 0.458333333333333em Calibri, Optima, ﾎ
 Arial, sans‐serif; /* 11px / 24px */

 color: #747474;

 letter‐spacing: 0.15em;

 text‐transform: uppercase;

 text‐decoration: none;

}

The result? Our tiny page is +nished, perfectly matching our
intended design—but with text set in resizeable, scaleable ems
(fig 2.8).

fig 2.8: And with some simple math, our typesetting’s complete—without a single pixel
in sight.

 23

From !exible fonts to a !exible grid

It’s possible you’re very, very bored right now. I mean, here
you are, knee-deep in what’s supposed to be a chapter about
creating *exible, grid-based layouts, and this Ethan fellow
won’t stop prattling on about typesetting and math. The nerve.

But the +rst time I had to build on a *exible grid, I had no
idea where to begin. So I did what I do every time I’m faced
with a problem I don’t know how to solve: I avoided it en-
tirely, and started working on something else.

As I started work on setting the site’s type in ems, I had
a minor epiphany: namely, that we can apply the same sort
of proportional thinking to layout that we apply to relative
font sizes. In other words, every aspect of our grid—the rows
and columns, and the modules draped over them—can be ex-
pressed as proportions of their containing element, rather than
in unchanging, in*exible pixels.

And we can do so by recycling our trusty target ÷
context = result formula. Let’s dive in.

CREATING A FLEXIBLE GRID

Let’s pretend that our designer sent over another mockup,
since she was so impressed with our quick turnaround on that
headline we produced. We’re now tasked with coding the blog
section of the Robot or Not website (fig 2.9).

As it turns out, our designer likes us so darn much she’s
even included a quick content inventory of the page (fig 2.10),
which will save us some pre-production planning. We should
really send her some cookies or something.

We can handily translate her schematic into a basic markup
structure, like so:

<div id="page">

 <div class="blog section">

 <h1 class="lede">Recently in The Bot

 Blog</h1>

THE FLEXIBLE GRID

 24 RESPONSIVE WEB DESIGN

fig 2.10: The
content inventory
for our blog
module.

fig 2.9: Our
new assignment:
converting this
blog design into a
standards-based,
!exible layout.

 25

 <div class="main">

 …

 </div><!‐‐ /end .main ‐‐>

 <div class="other">

 …

 </div><!‐‐ /end .other ‐‐>

 </div><!‐‐ /end .blog.section ‐‐>

</div><!‐‐ /end #page ‐‐>

Our skeleton markup is lean, mean, and semantically rich,
perfectly matching the high-level content inventory. We’ve
created a generic container for the entire page (#page), which
in turn contains our .blog module. And within .blog we’ve
created two more containers: a div classed as .main for our
main article content, and another div classed as .other for,
um, other stu). Poetry it ain’t, but poetry it doesn’t have
to be.

At this point, we’re going to skip a few steps in our exer-
cise. In fact, let’s pretend that this is one of those cooking
shows where the chef throws a bunch of ingredients into a
pot, and then turns around to produce a fully cooked turkey.
(This metaphor handily demonstrates how infrequently I
watch cooking shows. Or cook turkey.)

But let’s assume that we’ve already done all the CSS related
to typesetting, background images, and just about every ele-
ment of our design that isn’t related to layout (fig 2.11). With
those other details +nished, we can focus exclusively on pro-
ducing our *uid grid.

So how exactly do we turn those .main and .other blocks
into proper columns? With our content inventory +nished
and some basic markup in place, let’s go back to our comp
and take a closer look at the grid’s physical characteristics (fig
2.12).

Reviewing the design tells us a few things: +rst, that the
grid itself is divided into 12 columns, each measuring 69
pixels across and separated by regular 12px-wide gutters.

THE FLEXIBLE GRID

 26 RESPONSIVE WEB DESIGN

Taken together, those columns and gutters give us a total
width of 960 pixels. However, the blog itself is only 900 pixels
wide, centered horizontally within that 960px-wide canvas.

So those are the high-level details. And if we take a closer
look at the two columns inside of the blog (fig 2.13), we can
see that the left-hand content column (.main in our markup)
is 566 pixels wide, while the right-hand, secondary column
(.other) is only 331 pixels across.

fig 2.12: Grid-based layout is grid-based!

fig 2.11: Our template is
.nished! Well, with the
possible exception of, you
know, an actual layout.

 27

Well now. Quite a few pixel values *oating around so far,
aren’t there? And if we were content with pixels we could
simply drop them into our CSS directly. (Hello, leading
statement!)

#page {

 margin: 36px auto;

 width: 960px;

}

.blog {

 margin: 0 auto 53px;

 width: 900px;

}

.blog .main {

 float: left;

 width: 566px;

}

.blog .other {

 float: right;

 width: 331px;

}

fig 2.13: Let’s narrow our focus a bit, and measure the internal columns.

THE FLEXIBLE GRID

 28 RESPONSIVE WEB DESIGN

Nice and neat: we’ve set the width of #page to 960 pixels,
centered the 900px-wide .blog module within that container,
set the widths of .main and .other to 566px and 331px, re-
spectively, and +nally *oated the two columns opposite each
other. And the result looks stellar (fig 2.14).

But while our layout’s matched the comp perfectly, the
result is downright in*exible. Fixed at a width of 960px, our
page is blissfully indi)erent to changes in viewport size, forc-
ing a horizontal scrollbar upon the reader if the window drops
even slightly below 1024 pixels (fig 2.15).

In short, we can do better.

From pixels to percentages

Instead of pasting the pixel values from our comp directly
into our CSS, we need to express those widths in relative,

fig 2.14: A few pixel-based /oats later, and our design’s nearly .nished. Or is it?

 29

proportional terms. Once we’ve done so, we’ll have a grid that
can resize itself as the viewport does, but without compromis-
ing the design’s original proportions.

Let’s start at the outermost #page element, which contains
our design, and work our way in:

#page {

 margin: 36px auto;

 width: 960px;

}

Nasty, evil pixels. We hates them.
Okay, okay: not really. Remember, there’s absolutely noth-

ing wrong with +xed-width layouts! But to move toward a
more *exible grid, let’s start with a percentage value to replace
that 960px:

fig 2.15: Our layout is lovely, but it’s so very in/exible. Let’s .x that.

THE FLEXIBLE GRID

 30 RESPONSIVE WEB DESIGN

#page {

 margin: 36px auto;

 width: 90%;

}

I’ll confess that I arrived at 90% somewhat arbitrarily, doing
a bit of trial and error in the browser window to see what
looked best. By setting our #page element to a percentage of
the browser window, we’ve created a container that will ex-
pand and contract as the viewport does (fig 2.16). And as that
container is centered horizontally within the page, we’ll be
left with a comfortable +ve percent margin on either side.

So far, so good. Moving down the markup, let’s set our
sights on the .blog module itself. Previously, when we were
toying with pixels, we wrote the following rule:

fig 2.16: Our container /exes as the browser window does.

 31

.blog {

 margin: 0 auto 53px;

 width: 900px;

}

Instead of a value set in pixels, we need to express .blog’s
width of 900px in proportional terms: speci+cally, describing
it as a percentage of the width of its containing element. And
this is where our beloved target ÷ context = result for-
mula comes back into play.

We already know our target pixel width for our blog: that’s
900px, as de+ned in our mockup. What we want is to describe
that width in relative terms, as a percentage of .blog’s con-
taining element. Since .blog is nested within the #page ele-
ment, we’ve got our context—namely, 960 pixels, the width
of #page as it was designed in the mockup.

So let’s divide our target width for .blog (900) by its
context (960):

900 ÷ 960 = 0.9375

We’re left with a result of 0.9375. Doesn’t look like much,
I’ll admit. But by moving the decimal over two places we’re
left with 93.75%, a percentage we can drop directly into our
CSS:

.blog {

 margin: 0 auto 53px;

 width: 93.75%; /* 900px / 960px */
}

(Just as I did with our relative typesetting exercise, I’ve left
the formula in a comment o) to the right of the width prop-
erty. This is a personal preference, of course, but I’ve found it
to be incredibly helpful.)

So that takes care of our two containing elements. But what
about our content columns?

THE FLEXIBLE GRID

 32 RESPONSIVE WEB DESIGN

.blog .main {

 float: left;

 width: 566px;

}

.blog .other {

 float: right;

 width: 331px;

}

Our left-hand content column is *oated to the left, and set
at 566px; the additional content is *oated opposite, sized at a
width of 331px. Once again, let’s replace those pixel-based tar-
get widths with percentages.

But before we drop those values into our target ÷
 context = result formula, it’s important to note that our con-
text has changed. Last time, we divided the width of our blog
module by 960px, the width of its container (#page). But since
they’re nested inside .blog, we need to express our columns’
widths in relation to 900px—the width of the blog.

So we’ll divide our two target values (566px and 331px) by
900px, our new context:

566 ÷ 900 = .628888889

331 ÷ 900 = .367777778

Once we move our decimal points we’re left with
62.8888889% and 36.7777778%, the proportional widths of
.main and .other:

.blog .main {

 float: left;

 width: 62.8888889%; /* 566px / 900px */
}

.blog .other {

 float: right;

 width: 36.7777778%; /* 331px / 900px */
}

 33

Just like that, we’re left with a *exible, grid-based layout
(fig 2.17).

With some simple math we’ve created a percentage-based
container and two *exible columns, creating a layout that re-
sizes in concert with the browser window. And as it does, the
pixel widths of those columns might change—but the propor-
tions of our design remain intact.

FLEXIBLE MARGINS AND PADDING

Now that those two columns are in place, we’re done with
the top-level components of our *exible grid. Marvelous.
Wonderful. Stupendous, even. But before we haul out any
more adjectives, there’s quite a bit of detail work to be done.

Can’t get no ventilation

First and foremost, our design may be *exible, but it is in seri-
ous need of some detail work. The two most grievous o)end-
ers? The title of our blog is *ush left within its container (fig
2.18), and our two columns currently abut each other, with no
margins or gutters in sight (fig 2.19). We de+nitely have some
cleanup to do.

So let’s begin with that headline. In our comp, there’s 48
pixels of space between our headline and the left edge of its
container (fig 2.20). Now, we could use pixels to set a +xed
padding‐left on our headline in either pixels or ems, like so:

fig 2.17: Our /exible grid is complete.

THE FLEXIBLE GRID

 34 RESPONSIVE WEB DESIGN

.lede {

 padding: 0.8em 48px;

}

This is a decent solution. But a +xed value for that
 padding‐left would create a gutter that doesn’t line up with
the rest of our *uid grid. As our *exible columns expand or
contract, that gutter would simply ignore the rest of our de-
sign’s proportions, sitting stubbornly at 48px no matter how
small or wide the design became.

So instead, let’s create a "exible gutter. So far, we’ve
been describing various elements’ widths in propor-
tional terms. But we can also create percentage-based

fig 2.18: Our headline is in dire need of
padding.

fig 2.19: Margins? We don’t need no
stinking margins. (Actually, we do. We
really do.)

 35

margins and padding to preserve the integrity of our *exible
grid. And we can reuse the target ÷ context = result for-
mula to do so.

Before we start in with the math, it’s important to note
that the context is slightly di)erent for each, and depends on
whether you’re setting *exible margins or *exible padding:

1. When setting *exible margins on an element, your context
is the width of the element’s container.

2. When setting *exible padding on an element, your context
is the width of the element itself. Which makes sense, if you
think about the box model: we’re describing the padding in
relation to the width of the box itself.

Since we want to set some padding on our headline, our
context is the width of our .lede title. Now since the head-
line doesn’t have a declared width, its width (and the context
we need for our formula) is the width of the blog module, or
900px. So out comes the calculator, and we’re left with:

48 ÷ 900 = 0.0533333333

which translates to:

fig 2.20: According to the design,
we need 48px of horizontal
padding on the left edge of our
headline.

THE FLEXIBLE GRID

 36 RESPONSIVE WEB DESIGN

.lede {

 padding: 0.8em 5.33333333%; /* 48px / 900px */
}

And there we have it: our 48px padding has been expressed in
relative terms, as a proportion of our headline’s width.

With that issue resolved, let’s introduce a bit of whitespace
to our compacted content. To do so, it’s worth remembering
that each column actually has a smaller module contained
within it: the left-hand .blog column contains an .article,
while the .other column contains our .recent‐entries list-
ing (fig 2.21).

We start with the recent entries module. Fortunately for
us, our work’s over pretty quickly. Since we know the width
of the element (231px) and the width of its containing column
(331px), we can simply center our module horizontally:

.recent‐entries {

 margin: 0 auto;

 width: 69.7885196%; /* 231px / 331px */
}

fig 2.21: Taking a look at the comp, we can quickly size up their respective widths. Pun
unfortunate, but intended.

 37

Now, we could take the same approach with our article.
But instead, let’s make it a bit more interesting. Remember the
48px padding we set on our headline? Well, our article falls
along the same column (fig 2.22). So rather than just centering
our article within its container, let’s create another propor-
tional gutter.

Our target value is 48px. And since we’re working with
relative padding, our context should be the width of the article
itself. But once again, since there’s no explicit width set on
.article, we can simply use 566px, the width of its parent
(.blog), for our context:

.article {

 padding: 40px 8.48056537%; /* 48px / 566px */
}

Voilà! Our *exible grid’s all but +nished (fig 2.23).

Getting negative

Let’s turn to our blog entry’s beleaguered date header.

fig 2.22: Our headline and article share
a common padding.

THE FLEXIBLE GRID

 38 RESPONSIVE WEB DESIGN

Currently, it’s spanning the full width of the blog entry, and
that won’t do. Given what we’ve learned so far, it’s fairly
straightforward to +x its width: the comp tells us our date
should be *oated to the left, and that it occupies one 69px
column (refer back to fig 2.12). Since the date sits within the
474px-wide article, we have our context.

Armed with that information, let’s write some quick CSS:

.date {

 float: left;

 width: 14.556962%; /* 69px / 474px */
}

So far, so *exible, so good. But there’s one key component
missing: our date is currently *oating neatly against the left
edge of the article, with the title and copy *oating around it
(fig 2.24). What we need to do is to pull that quote out of its

fig 2.23: Flexible padding and margins! Hooray!

 39

container, and move it across the left-hand edge of the entire
module.

And with negative margins, we can do exactly that. And
we don’t have to change our approach because the margin is
negative: just as before, we simply need to express that margin
in relation to the width of the element’s container.

If we look at the mockup, we can see that there are 81 pix-
els from the left edge of the date over to the left edge of the
article (fig 2.25). And if this was a +xed-width design, that
would be our negative margin:

.date {

 float: left;

 margin‐left: ‐81px;

 width: 69px;

}

But hey: we haven’t used a single pixel yet, and we’re not
about to start now. Instead, we want to express that margin
in relative terms, just as we did with our pull quote. It’s go-
ing to be a negative margin, but that doesn’t change the math.
We still want to express our target value—that 81px-wide

fig 2.24: Something’s
rotten in Denmark.
(By “Denmark,” I mean
“our entry date.” And
by “rotten,” I mean
“entirely too close to
the adjoining text.”)

THE FLEXIBLE GRID

 40 RESPONSIVE WEB DESIGN

margin—as a percentage of 474px, the width of the date’s con-
taining element:

81 ÷ 474 = .170886076

Do the decimal shift and slap a minus sign on there, and we’ve
got our proportional, negative margin:

.date {

 float: left;

 margin‐left: ‐17.0886076%; /* 81px / 474px */
 width: 14.556962%; /* 69px / 474px */
}

Now sit back, relax, and take comfort in the fact that you’ve
built your +rst fully *exible grid (fig 2.26). I feel a high +ve
coming on.

fig 2.25: We need to draw that date
out to the left by 81px. Or, you know,
the relative equivalent thereof.

 41

Moving forward, !exibly

I realize I just subjected you to a truckload of division signs.
And as someone who gets headaches from balancing his
checkbook, believe me: I sympathize.

But building a *exible grid isn’t entirely about the math.
The target ÷ context = result formula makes it easy to
articulate those proportions into stylesheet-ready percentages,
sure—but ultimately, we need to break our habit of translating
pixels from Photoshop directly into our CSS, and focus our
attention on the proportions behind our designs. It’s about
becoming context-aware: better understanding the ratio-based
relationships between element and container.

But a *uid grid is just our foundation, the +rst layer of a
responsive design. Let’s move onto the next step.

fig 2.26: Our /exible grid is .nally .nished. Not a pixel value in sight, and we didn’t have
to skimp on the aesthetics.

THE FLEXIBLE GRID

 42 RESPONSIVE WEB DESIGN

things are looking good so far: we’ve got a grid-based
layout, one that doesn’t sacri+ce complexity for *exibility. I
have to admit that the +rst time I +gured out how to build a
*uid grid, I was feeling pretty proud of myself.

But then, as often happens with web design, despair set in.
Currently, our page is awash in words, and little else. Actually,
nothing else: our page is nothing but text. Why is this a prob-
lem? Well, text re*ows e)ortlessly within a *exible con-
tainer—and I don’t know if you’ve noticed, but the Internet
seems to have one or two of those “image” things lying
around. None of which we’ve incorporated into our *uid grid.

So what happens when we introduce +xed-width images
into our *exible design?

GOING BACK, BACK TO MARKUP, MARKUP

To +nd an answer, let’s do another quick experiment: let’s
drop an image directly into our blog module, and see how our

FLEXIBLE
IMAGES3

 FLEXIBLE IMAGES 43

layout responds. The +rst thing we’ll need to do is to clear
some space for it in our markup.

Remember our little blockquote, comfortably tucked into
our blog article? Well, we’ve got way too much text on this
darned page, so let’s replace it with an inset image:

<div class="figure">

 <p>

 <b class="figcaption">Lo, the robot walks

 </p>

</div>

Nothing fancy: an img element, followed by a brief but de-
scriptive caption wrapped in a b element. I’m actually appro-
priating the HTML5 figure/figcaption tags as class names in
this snippet, which makes for a solidly semantic foundation.

(Sharp-eyed readers will note that I’m using a b element for
a non-semantic hook. Now, some designers might use a span
element instead. Me, I like the terseness of shorter tags like b
or i for non-semantic markup.)

With that HTML +nished, let’s drop in some basic CSS:

.figure {

 float: right;

 margin‐bottom: 0.5em;

 margin‐left: 2.53164557%; /* 12px / 474px */
 width: 48.7341772%; /* 231px / 474px */
}

We’re creating a nice inset e)ect for our +gure. It’ll be *oated
to the right, and will span roughly half the width of our arti-
cle, or four columns of our *exible grid. Markup: check; style:
check. Of course, all this HTML and CSS is for naught if there
isn’t an actual image available.

Now, because I love you (and robots) dearly, not just any
image will do. And after scouring the web for whole minutes,
I found a fantastically imposing robo-portrait (fig 3.1). The

 44 RESPONSIVE WEB DESIGN

beautiful thing about this image (aside from the robot, of
course) is that it’s huge. I’ve cropped it slightly, but I haven’t
scaled it down at all, leaving it at its native resolution of
655×655. This image is much larger than we know its *exible
container will be, making it a perfect case to test how robust
our *exible layout is.

So let’s drop our oversized image onto the server, reload
the page, and—oh. Well. That’s pretty much the worst thing
on the internet (fig 3.2).

Actually, the result isn’t that surprising. Our layout isn’t
broken per se—our *exible container is working just +ne,
and the proportions of our grid’s columns remain intact.
But because our image is much wider than its containing
.figure, the excess content simply over*ows its container,
and is visible to the user. There simply aren’t any constraints
applied to our image that could make it aware of its *exible
environment.

FLUID IMAGES

But what if we could introduce such a constraint? What if we
could write a rule that prevents images from exceeding the
width of their container?

Well, here’s the good news: that’s very easy to do:

fig 3.1: An appropriately botty robot
pic, courtesy of Jeremy Noble (http://
bkaprt.com/rwd/10/).

http://bkaprt.com/rwd/10/
http://bkaprt.com/rwd/10/

 FLEXIBLE IMAGES 45

img {

 max‐width: 100%;

}

First discovered by designer Richard Rutter (http://bkaprt.
com/rwd/11/), this one rule immediately provides an incred-
ibly handy constraint for every image in our document. Now,
our img element will render at whatever size it wants, as long
as it’s narrower than its containing element. But if it happens
to be wider than its container, then the max‐width: 100% di-
rective forces the image’s width to match the width of its con-
tainer. And as you can see, our image has snapped into place
(fig 3.3).

What’s more, modern browsers have evolved to the point
where they resize the images proportionally: as our *exible
container resizes itself, shrinking or enlarging our image, the
image’s aspect ratio remains intact (fig 3.4).

I hope you’re not tired of all this good news because as it
happens, the max‐width: 100% rule can also apply to most
+xed-width elements, like video and other rich media. In fact,

fig 3.2: Our huge
image is huge.
Our broken layout
is broken.

http://bkaprt.com/rwd/11/
http://bkaprt.com/rwd/11/

 46 RESPONSIVE WEB DESIGN

we can beef up our selector to cover other media-ready ele-
ments, like so:

img,

embed,

object,

video {

 max‐width: 100%;

}

Whether it’s a cute little Flash video (fig 3.5), some other
embedded media, or a humble img, browsers do a fair job of

fig 3.3: Just by including max‐width: 100%, we’ve prevented our image from escaping its
/exible container. On a related note, I love max‐width: 100%.

 FLEXIBLE IMAGES 47

resizing the content proportionally in a *exible layout. All
thanks to our lightweight max‐width constraint.

So we’ve cracked the problem of *exible images and me-
dia—right? One CSS rule and we’re done?

BECAUSE THIS JOB IS NEVER EASY

Time to let the healing begin: we need to work through the
pain, the tears, the rending of garments, and talk about a few
browser-speci+c issues around *exible images.

max-width in Internet Explorer

The cold, hard truth is that Internet Explorer 6 and below
don’t support the max‐width property. IE7 version and above?
Oh, it is positively brimming with support for max‐width. But
if you’re stuck supporting the (cough) venerable IE6 or lower,
our approach needs re+nement.

Now, there are several documented ways to get max‐width
support working in IE6. Most are JavaScript-driven, usually
relying on Microsoft’s proprietary expression +lter to dy-
namically evaluate the width of an element, and to manually

fig 3.4: Regardless of how wide or small its /exible container becomes, the image resizes
proportionally. Magic? Who can say.

 48 RESPONSIVE WEB DESIGN

resize it if it exceeds a certain threshold. For an example of
these decidedly non-standard workarounds, I’d recommend
Svend Tofte’s classic blog entry on the subject (http://bkaprt.
com/rwd/12/).

Me? I tend to favor a more lo-+, CSS-driven approach.
Namely, all modern browsers get our max-width constraint:

img,

embed,

object,

video {

 max‐width: 100%;

}

fig 3.5: Other media play nicely with max‐width: 100%, becoming /exible themselves. Did
I mention I love max‐width: 100%?

http://bkaprt.com/rwd/12
http://bkaprt.com/rwd/12/

 FLEXIBLE IMAGES 49

But in a separate IE6-speci+c stylesheet, I’ll include the
following:

img,

embed,

object,

video {

 width: 100%;
}

See the di)erence? IE6 and lower get width: 100%, rather
than the max‐width: 100% rule.

A word of warning: tread carefully here, for these are dras-
tically di)erent rules. Whereas max‐width: 100% instructs our
images to never exceed the width of their containers, width:
100% forces our images to always match the width of their con-
taining elements.

Most of the time, this approach will work just +ne. For
example, it’s safe to assume that our oversized robot.jpg im-
age will always be larger than its containing element, so the
width: 100% rule works beautifully.

But for smaller images like thumbnails, or most embedded
movies, it might not be appropriate to blindly up-scale them
with CSS. If that’s the case, then a bit more speci+city might
be warranted for IE:

img.full,

object.full,

.main img,

.main object {

 width: 100%;

}

If you don’t want the width: 100% rule to apply to every piece
of +xed-width media in your page, we can simply write a list
of selectors that target certain kinds of images or video (img.
full), or certain areas of your document where you know

 50

you’ll be dealing with oversized media (.main img, .main
object). Think of this like a whitelist: if images or other
media appear on this list, then they’ll be *exible; otherwise,
they’ll be +xed in their stodgy old pixel-y ways.

So if you’re still supporting legacy versions of Internet
Explorer, a carefully applied width: 100% rule can get those
*exible images working beautifully. But with that bug sorted,
we’ve still got one to go.

And boy, it’s a doozy.

In which it becomes clear that Windows hates us

If you look at our blog module with certain Windows-based
browsers, our robot.jpg has gone from looking imposing
to looking, well, broken (fig. 3.6). But this isn’t a browser-
speci+c issue as much as a platform-speci+c one: Windows
doesn’t scale images that well. In fact, when they’re resized
via CSS, images quickly develop artifacts on Windows,
dramatically impacting their quality. And not in a good way.

For a quick test case, I’ve tossed a text-heavy graphic into
a *exible container, and then resized our image with the max‐
width: 100% +x, while IE6 and below receive the width:
100% workaround. Now, you’d never actually put this amount
of text in an image. But it perfectly illustrates just how badly
things can get in IE7 or lower. As you can see, the image
looks—if you’ll pardon the technical term—downright nasty
(fig 3.7).

But before you give up on the promise of scaleable, *ex-
ible images, it’s worth noting that this bug doesn’t a)ect every
Windows-based browser. In fact, only Internet Explorer 7
and lower are a)ected, as is Firefox 2 and lower on Windows.
More modern browsers like Safari, Firefox 3+, and IE8+ don’t
exhibit a single problem with *exible images. What’s more,
the bug seems to have been +xed in Windows 7, so that’s more
good news.

So with the scope of the problem de+ned, surely there’s a
patch we can apply? Thankfully, there is—with the exception
of Firefox 2.

 FLEXIBLE IMAGES 51

Now, this grizzled old browser was released in 2006, so I
think it’s safe to assume it isn’t exactly clogging up your site’s
tra?c logs. At any rate, a patch for Firefox 2 would require
some fairly involved browser-sni?ng to target speci+c ver-
sions on a speci+c platform—and browser-sni?ng is unreliable
at best. But even if we did want to perform that kind of detec-
tion, these older versions of Firefox don’t have a switch that
could +x our busted-looking images.

Internet Explorer, however, does have such a toggle. (Pardon
me whilst I swallow my pride for this next section title.)

fig 3.6: Seen here in IE6, our robot
image has developed some unsightly
artifacts. Guess Windows doesn’t
much care for our /exible images.

fig 3.7: In certain Windows-based
browsers, the image quickly develops
too many artifacts to be readable.

 52 RESPONSIVE WEB DESIGN

Hail AlphaImageLoader, the conquering hero

Ever tried to get transparent PNGs working in IE6 and below?
Chances are good you’ve encountered AlphaImageLoader,
one of Microsoft’s proprietary CSS +lters (http://bkaprt.com/
rwd/13/). There have since been more robust patches created
for IE’s lack of support for the PNG alpha channel (Drew
Diller’s DD_belatedPNG library is a current favorite of mine:
http://bkaprt.com/rwd/14/), but historically, if you had a PNG
attached to an element’s background, you could drop the fol-
lowing rule into an IE-speci+c stylesheet:

.logo {

 background: none;

 filter: progid:DXImageTransform.Microsoft. »

 AlphaImageLoader(src="/path/to/logo.png", »

 sizingMethod="scale");

}

This AlphaImageLoader patch does a few things. First, it
removes the background image from the element, then inserts
it into an AlphaImageLoader object that sits “between” the
proper background layer and the element’s content. But the
sizingMethod property (http://bkaprt.com/rwd/15/) is the clev-
er bit, dictating whether the AlphaImageLoader object should
crop any parts of the image that over*ow its container, treat
it like a regular image, or scale it to +t it within its containing
element.

I can hear you sti*ing your yawns by now: after all, what
does an IE-speci+c PNG +x have to do with our broken image
rendering?

Quite a bit, as it turns out. At one point I discovered that
applying AlphaImageLoader to an image dramatically im-
proves its rendering quality in IE, bringing it up to par with,
well, every other browser on the planet. Furthermore, by
setting the sizingMethod property to scale, we can use our
AlphaImageLoader object to create the illusion of a *exible
image.

http://bkaprt.com/rwd/13
http://bkaprt.com/rwd/13/
http://bkaprt.com/rwd/14
http://bkaprt.com/rwd/14/
http://bkaprt.com/rwd/15/

 FLEXIBLE IMAGES 53

So I whipped up some JavaScript to automate that process.
Simply download the script (available at http://bkaprt.com/
rwd/16/) and include it on any page with *exible images; it will
scour your document to create a series of *exible, high-quality
AlphaImageLoader objects.

And with that +x applied, the di)erence in our rendered
images is noticeable (fig 3.8): in our example we’ve gone from
an impossibly distorted image to an immaculately rendered
one. And it works wonderfully in a *exible context.

(It’s worth mentioning that many of Microsoft’s proprietary
+lters, and AlphaImageLoader in particular, have some perfor-
mance overhead associated with them—Stoyan Stefanov cov-
ers the pitfalls in more detail on the YUI blog: http://bkaprt.
com/rwd/17/. What does this mean for you? Just be sure to test
the +x thoroughly on your site, gauge its e)ect on your users,
and evaluate whether or not the improved rendering is worth
the performance tradeo).)

With the max‐width: 100% +x in place (and aided by our
width: 100% and AlphaImageLoader patches), our inset image

fig 3.8: Our image is now perfectly legible, and resizing wonderfully. A dab of
AlphaImageLoader’ll do ya.

http://bkaprt.com/rwd/16/
http://bkaprt.com/rwd/16
http://bkaprt.com/rwd/17
http://bkaprt.com/rwd/17/

 54 RESPONSIVE WEB DESIGN

is resizing beautifully across our target browsers. No matter
the size of the browser window, our image scales harmoni-
ously along with the proportions of our *exible grid.

But what about images that aren’t actually in our markup?

FLEXIBLY TILED BACKGROUND IMAGES

Let’s say our dearly esteemed designer sends over a revised
mockup of our blog module. Notice anything di)erent about
it? (fig 3.9)

Up until now, our blog’s content has been sitting on a rath-
er unassuming near-white background. But now the design
has been modi+ed slightly, adding a two-toned background to
the blog entry to provide more contrast between the left- and
right-hand columns. What’s more, there’s actually a subtle
level of noise added to the background, adding an extra level
of texture to our design (fig 3.10).

So: how do we actually add this new background image to
our template?

Back in 2004, Dan Cederholm wrote a brilliant article
showing how a vertically repeating background graphic could
be used to create a “faux column” e)ect (http://bkaprt.com/

fig 3.9: Our blog’s sidebar is now sporting a background graphic. Hot.

http://bkaprt.com/rwd/18

 FLEXIBLE IMAGES 55

rwd/18/). The technique’s genius is in its simplicity: by tiling a
colored background graphic vertically behind our content, we
can create the illusion of equal height columns.

In Dan’s original technique, the background graphic was
simply centered at the top of the content area and then tiled
vertically, like so:

.blog {

 background: #F8F5F2 url("blog‐bg.png") repeat‐y 50% 0;

}

And that technique works beautifully. But Dan’s technique as-
sumes that your design is a +xed width, creating a graphic that
matches the width of your design. Then how, pray, are we
supposed to work in a background image that tiles over two
"exible columns?

Thanks to some early research by designer Doug Bowman
(http://bkaprt.com/rwd/19/), we can still apply the faux col-
umn technique. It just requires a little bit of extra planning, as
well as a dash of your favorite formula, target ÷ context =
result.

First, we’ll begin by taking a look at our mockup, to +nd
the transition point in our background graphic, the exact pixel
at which our white column transitions into the gray. And
from the look of things, that switch happens at the 568 pixel
mark (fig 3.11).

Armed with that information, we can now adapt the “faux
columns” approach to our *uid grid. First, we’ll convert that

fig 3.10: A detailed look at our new
background treatment.

http://bkaprt.com/rwd/18/
http://bkaprt.com/rwd/19/

 56 RESPONSIVE WEB DESIGN

transition point into a percentage-based value relative to our
blog module’s width. And to do so, our target ÷ context =
result formula comes into play yet again. We have our target
value of 568px, and the width of the design—our context—is
900px. And if we plug those two values into our stalwart
formula:

568 ÷ 900 = 0.631111111111111

That’s right: another impossibly long number, which converts
to a percentage of 63.1111111111111%.

Keep that percentage in the back of your mind for a mo-
ment. Now, let’s open up your favorite image editor, and
create a foolishly wide document—say, one that’s 3000 pixels
across (fig 3.12). And since we’re going to tile this image verti-
cally, its height is only 160px tall.

In a moment, we’re going to turn this blank document into
our background graphic. But why is it so large? Well, this
image needs to be larger than we can reasonably assume the
browser window will ever be. And unless you’re reading this
from the 25th century on your wall-sized display made of, I
don’t know, holograms or whatever, I’m assuming your moni-
tor’s not quite that wide.

To create the columns themselves, we’ll need to apply the
transition point percentage (63.1111111111111%) to our new,
wider canvas. So if we’re working with a graphic that’s 3000px
across, we simply need to multiply that width by the percent-
age, like so:

fig 3.11: Our white column switches over to gray at the 568px mark. That’s our transition
point.

 FLEXIBLE IMAGES 57

3000 x 0.631111111111111 = 1893.333333333333

We’re left with 1893.333333333333 as our result. And since
Photoshop doesn’t deal in anything less than whole pixels,
let’s round that down to 1893 pixels. Armed with that number,
we’ll recreate our textures in our blank image, switching from
white to gray at the 1893rd pixel (fig 3.13).

How does that help us? Well, what we’ve just done is to
proportionally scale our transition point up to this new, wider
canvas. So we can take that new pixel value, and use it to cre-
ate our columns: the white column will be 1893px wide, with
the gray column +lling up the remainder.

So now there’s only one thing left to do: drop our newly
minted graphic into our stylesheet.

fig 3.12: A monstrously large canvas that we’ll (shortly) turn into our background graphic.

fig 3.13: We’ve applied that percentage to our oh-so-wide background graphic, creating
our tile-ready columns.

 58 RESPONSIVE WEB DESIGN

.blog {

 background: #F8F5F2 url("blog‐bg.png") repeat‐y »

 63.1111111111111% 0; /* 568px / 900px */
}

As in Dan’s original technique, we’re still positioning the
graphic at the very top of our blog, and then repeating it
vertically down the width of the module (repeat‐y). But the
 background‐position value reuses our transition point per-
centage (63.1111111111111% 0), keeping the columns +rmly in
place as our design resizes itself.

And with that, we’ve got faux columns working beautifully
in a *uid layout (fig 3.14). All thanks to Dan Cederholm’s orig-
inal approach, augmented with a little proportional thinking.

Fully !exible background images?

Of course, our *exible faux column isn’t really *exible: we’re
simply using percentages to position a background image in
such a way that the columns appear to resize with their con-
tainer. The image’s dimensions haven’t changed at all.

But what about a background image that actually does need
to resize with the layout? Perhaps you’ve placed a logo on an
h1 element’s background, or used sprites to create rollovers
for your site’s navigation. Can we resize images that need to
live in the background?

Well, sort of. There is a CSS3 property called background‐
size (http://bkaprt.com/rwd/20/), which would allow us to
create truly *exible background images, but—you guessed it—
browser support is still pretty immature.

In the interim, there are some rather ingenious JavaScript-
based solutions out there: for example, Scott Robbin’s jQuery
Backstretch plugin (http://bkaprt.com/rwd/21/) simulates resiz-
able background images on the body element. And as you’ll
see in the next chapter, CSS3 media queries could also be used
to apply di)erent background images tailored to di)erent
resolution ranges. So while background‐size might not be
available yet, the sky is, as the kids say, the limit.

blog-bg.png
http://bkaprt.com/rwd/20/
http://bkaprt.com/rwd/21/

 FLEXIBLE IMAGES 59

LEARNING TO LOVE OVERFLOW

There are a few other options for working +xed-width im-
ages into a *uid context. In fact, you might consider brows-
ing through Richard Rutter’s experiments with wide images
placed in *exible layouts (http://bkaprt.com/rwd/11/). There
are a number of promising experiments listed there, some of
which might prove useful to you as you start tinkering with
*exible layouts.

One method I’ve used on a few occasions is the overflow
property. As we saw earlier in the chapter, wide images will,
by default, simply bleed out of their containing elements.
And in most cases, the max‐width: 100% rule is the best way
to constrain them, snapping them back down to a manage-
able size. But alternately, you could simply clip o) that excess

fig 3.14: Our /exibly faux columns.

http://bkaprt.com/rwd/11/

 60 RESPONSIVE WEB DESIGN

image data by applying overflow: hidden. So rather than set-
ting our inset image to resize itself automatically:

.feature img {

 max‐width: 100%;

}

We could instead simply clip o) all that excess, over*owing
data like so:

.feature {

 overflow: hidden;

}

.feature img {

 display: block;

 max‐width: auto;

}

And there you have it: one image, cropped to +t inside its con-
tainer (fig 3.15). The image is all still there, but the excess bits
have just been hidden from view.

Now, as you can see, this isn’t really a workable solution. In
fact, I’ve found that in the overwhelming majority of cases,
overflow is generally less useful than scaling the image via
max‐width. But still, it’s an option to be considered, and one
you might +nd some use for.

fig 3.15: And with a dash of æ©̋øÙæ¬ｵ"̶Æ¸¸̋º
applied to our image’s container, we’re left with
an image that’s . . . well, cropped. Yay, I guess?

 FLEXIBLE IMAGES 61

NEGOTIATE THAT CONTENT

It’s worth noting that both the overflow and max‐width:
100% approaches to *exible images are actually pretty robust,
and work remarkably well for most kinds of media. In fact,
I’ve used them successfully on a number of complex *uid
grids.

However, both approaches are ultimately “content-blind.”
Each establishes some basic rules for the way an image in-
teracts with its container: max‐width: 100% scales oversized
images down to match the width of their containers, while
controlling overflow allows the designer to conceal any image
data that might bleed out of its containing element.

But what about especially complex graphics? If your im-
age is especially information-rich (fig 3.16), simply scaling or

fig 3.16: This rich infographic from the BBC News site (http://bkaprt.com/rwd/22/)
contains information critical to the page’s content. Simply scaling it down could prove
counterproductive.

http://bkaprt.com/rwd/22/

 62 RESPONSIVE WEB DESIGN

cropping it might be less than desirable—in fact, those ap-
proaches might actually impede your readers’ ability to under-
stand the content contained in that image.

If that’s the case, it might be worth investigating ways of
delivering di)erent versions of the same image to di)erent
resolution ranges. In other words, you could create multiple
versions of your infographic—say, one ideal for desktop
browsers, as well as another, more linearized version for
small-screen devices. With those options established, a server-
side solution could intelligently serve the most appropriate
image for that resolution range.

Creating such a solution is beyond the scope of this book
(and beyond the skill of your humble author), but designer/
developer Bryan Rieger has outlined one possible approach
on his blog (http://bkaprt.com/rwd/23/), and made his solution
available for download.

If you decide to implement a back-end solution, it could
be augmented by the various client-side techniques we’ve
discussed so far. For example, you could serve images to a lim-
ited number of resolutions, and then use max‐width: 100% to
smooth the transition to other devices, browsers, and resolu-
tion ranges on an as-needed basis.

fig 3.17: Two chapters later, and we’ve .nally got a completed grid-based layout that can
expand and contract with a changing viewport.

http://bkaprt.com/rwd/23/

 FLEXIBLE IMAGES 63

FLEXIBLE GRIDS AND IMAGES,

UP IN THE PROVERBIAL TREE

At this point, we’ve explored everything you need to build
complex but *exible grid-based layouts: the simple math be-
hind *exible grids and some strategies for working images and
other media into that framework. While we’ve been focusing
on building a fairly simple blog module, we can actually use
this to build the rest of the Robot or Not site, creating a design
that’s founded on a system of proportions and percentages,
with nary a pixel in sight (fig 3.17).

With this *exible foundation in place, we’re ready to add
the +nal ingredient to our responsive design.

(And no, it’s not mixed metaphors.)

 64 RESPONSIVE WEB DESIGN

for most of my career, I’ve been a staunch proponent
of non-+xed layouts. Flexible or completely *uid, it didn’t
matter: I felt that building some measure of *uidity into our
designs better prepared them for the changes inherent to the
web: changes in the user’s browser window size, in display or
device resolution. What’s more, I’d often use words like “fu-
ture-proof ” and “device-agnostic” when describing the need
for this *exibility. Often while standing alone at parties.

But at some point, everything breaks.
As *exible as the Robot site is right now, it’s not completely

bulletproof. Sure, its *uid grid makes it pretty resilient to
changes in window size and screen resolution—much more
so than a +xed layout would. But even slight changes to the
size and shape of the browser window will cause our layout to
warp, bend, and possibly break outright.

Here’s the thing, though: that’s okay.

MEDIA QUERIES4

 MEDIA QUERIES 65

LET THE HEALING BEGIN

As painful as it might be, let’s look at some of the areas where
our design breaks as it reshapes itself. By identifying the prob-
lems we’re facing, we’ll be in a better position to apply the
needed +xes. Even if we shed a tear or three in the process.

Since we’re working with a *exible layout, we can simply
resize the browser window to a few di)erent widths. Now,
this is no substitute for actually testing our work on separate
devices. But it allows us to quickly assess how our design
handles several di)erent resolution ranges, and simulate how
users on capable phones, tablets, or other devices might expe-
rience our design.

A question of emphasis

Let’s begin by bringing the browser window in a bit, from
around 1024 pixels wide to roughly 760 pixels or so (fig 4.1).
Pretty quickly, a number of problems appear.

fig 4.1: By adjusting the size of our browser window, we can get a quick sense of how our
design performs at di0erent resolutions.

 66 RESPONSIVE WEB DESIGN

Our initial design was all about emphasis: large, imposing
headlines, a prominent lead image, and generous margins.
All of which still scale inside our *exible layout—but visually
speaking, the priorities have gone way o).

Look at the top of our site, where the lead image now
dominates the entire page (fig 4.2). Since we’re cropping the
image with the overflow property, it isn’t scaling with the rest
of our *exible grid. What’s more, the subject of the image, our
beloved robot, is actually getting pretty severely clipped. So
we’re left with an image that’s not only huge, but barely com-
prehensible. Fantastic.

Sitting in the shadow of that gigantic graphic, our logo has
scaled down to a nearly microscopic size. And what little pad-
ding we enjoyed between the navigation and the lead image
has been lost, making the entire masthead feel claustrophobic.

As much as I hate to say it, our visual hierarchy is reduced
to shambles as soon as we move slightly below the resolution
we originally designed for.

fig 4.2: It’s not exactly sunshine and puppies at the top of our design. Whatever that means.

 MEDIA QUERIES 67

Miniature grid, monster problems

And that’s not the worst of it. If we bring the browser win-
dow in a bit more to around 600 pixels—the width of a small
browser window, or of newer tablet computers held in por-
trait mode—the headaches just keep coming (fig 4.3). At the
top of the screen, our visual hierarchy’s still a mess: the lead
image is now cropped to the point of incoherence, and our
poor logo is even more of a thumbnail. But now our primary
navigation is wrapping in a fairly embarrassing manner. Surely
we can do better than that?

Moving down the page, our blog is really starting to su)er
(fig 4.4). Where the two-column layout once provided easy
access to some additional information, it now makes content
in each column feel constricted. In particular, the article’s lines
are uncomfortably short, making for a decidedly awful read-
ing experience. And the photo set within our blog entry looks
inconsequential, the content of the picture almost hard to
discern.

Finally, to conclude our little sideshow of tears, the photo
module at the bottom of the page is probably the worst of all
(fig 4.5). You thought the image in our blog entry was bad?
These photos are comically small, and nearly indecipherable.

fig 4.3: Every visitor to our site will absolutely love this broken-looking navigation. No,
trust me. They totally will.

 68 RESPONSIVE WEB DESIGN

The generous margins we initially used to frame those pic-
tures now seem wildly out of proportion, drowning our pho-
tos in a sea of whitespace.

fig 4.4: Reading this entry /
feels like scanning a haiku: /
painfully short lines.

fig 4.5: Tiny pictures,
monstrous margins. A match
made in . . . well, somewhere
not great.

 MEDIA QUERIES 69

Widescreen woes

Our problems aren’t isolated to the smaller end of the resolu-
tion spectrum, however. If we maximize our browser win-
dow, a whole new slew of design issues present themselves.

The intro (fig 4.6) doesn’t look awful, but the image is now
smaller than the space allotted for it. That aside, things don’t
look terrible up top—far from ideal, I admit, but not utterly
abysmal either. In general, our *exible grid looks okay up
there.

So let’s quash those good feelings by scrolling down to look
at the blog (fig 4.7). Remember how clipped our entry’s lines
felt in the smaller window? I’m almost missing those cramped
spaces, because these lines are just frighteningly long: the
width of that article column is entirely too generous at this
level. As much as my eye loves to spend hours circling back to
the beginning of the next line I’m supposed to read, there has
to be a better way.

fig 4.6: That intro is just uncomfortably wide.

 70 RESPONSIVE WEB DESIGN

And +nally, our photo gallery completely dominates the
bottom of the page (fig 4.8). The images themselves look +ne,
but they’re cartoonishly large. In fact, on my monitor there’s
no hint of any content above or below the module. Is this re-
ally the best way to present this information to our readers?

THE PROBLEM AT HAND

We’ve identi+ed a host of visual problems. But there’s a larger
issue coming into focus. As we move beyond the resolution
for which it was originally designed, our grid becomes a li-
ability to our content. Its proportions constrict our content
at smaller resolutions, and isolate it in a sea of whitespace at
higher ones.

This isn’t a problem unique to *exible layouts, however.
No design, +xed or *uid, scales well beyond the context for
which it was originally designed.

So how can we create a design that can adapt to changes
in screen resolution and viewport dimensions? How can our

fig 4.7: Moving down the page, the blog doesn’t fare quite so well. Long lines, tiny images,
sad Ethan.

 MEDIA QUERIES 71

page optimize itself for the myriad browsers and devices that
access it?

In other words, how can our designs become more
responsive?

SLOUCHING TOWARD RESPONSIVENESS

Thankfully, the W3C has been wrestling with this question
for some time. To better understand the solution they eventu-
ally presented, it’s worth reviewing a bit of the backstory.

Meet the media types

Their +rst stab at a solution was media types, part of the CSS2
speci+cation (http://bkaprt.com/rwd/24/). Here’s how they
were +rst described:

On occasion, however, style sheets for di#erent media types may
share a property, but require di#erent values for that property.

fig 4.8: These images are, to use a technical term, large ’n‘ chunky.

http://bkaprt.com/rwd/24/

 72 RESPONSIVE WEB DESIGN

For example, the “font‐size” property is useful both for screen
and print media. The two media types are di#erent enough to
require di#erent values for the common property; a document
will typically need a larger font on a computer screen than on
paper. Therefore, it is necessary to express that a style sheet, or a
section of a style sheet, applies to certain media types.

Okay, yeah. That’s a bit obtuse, isn’t it? Let’s try it in non-robot
terms.

Ever written a print stylesheet (http://bkaprt.com/rwd/25/)?
Then you’re already familiar with the concept of designing
for di)erent kinds of media. The ideal browsing experience
couldn’t di)er more between desktop browsers and printers, or
between handheld devices and speaking browsers. To address
this the W3C created a list of media types (http://bkaprt.com/
rwd/26/), attempting to classify each browser or device under a
broad, media-speci+c category. The recognized media types are:
all, braille, embossed, handheld, print, projection, screen,
speech, tty, and tv.

Some of these media types, like print or screen, or per-
haps even projection, are probably ones you’ve used before.
Perhaps others like embossed (for paged braille printers) or
speech (for speaking browsers and interfaces) seem new. But
all of these media types were created so that we could better
design for each type of browser or device, by conditionally
loading CSS tailored for each. So a screen-based device would
ignore CSS loaded with the print media type, and vice versa.
And for style rules meant to apply to all devices, the speci+ca-
tion created the all supergroup.

In practice, that meant customizing the media attribute of a
link:

<link rel="stylesheet" href="global.css" media="all" />

<link rel="stylesheet" href="main.css" media="screen" />

<link rel="stylesheet" href="paper.css" media="print" />

Or perhaps creating an @media block in your stylesheet, and
associating it with a particular media type:

http://bkaprt.com/rwd/25/
http://bkaprt.com/rwd/26/
http://bkaprt.com/rwd/26/

 MEDIA QUERIES 73

@media screen {

 body {

 font‐size: 100%;

 }

}

@media print {

 body {

 font‐size: 15pt;

 }

}

In each case, the speci+cation suggests the browser would
identify itself as belonging to one of the media types. (“I’m a
desktop browser! I belong to the screen media type.” “I smell
like ink cartridges and toner: I’m print media.” “I’m your
video game console’s browser: I’m media tv.” And so on.)
Upon loading the page, the browser would then render only
the CSS pertaining to its particular media type, and disregard
the rest. And in theory, this is a fantastic idea.

Theory being, of course, the last thing hard-working web
designers need.

Miscast types

Several problems with media types became evident when all
these little small-screen browsers, like phones and tablets, ar-
rived on the scene. According to the speci+cation, designers
could have targeted them simply by creating a stylesheet for
the handheld media type:

<link rel="stylesheet" href="main.css" media="screen" />

<link rel="stylesheet" href="paper.css" media="print" />

<link rel="stylesheet" href="tiny.css" media="handheld"/>

The problem with this approach is, well, us—at least in
part. Early mobile devices didn’t have su?ciently capable
browsers so we largely ignored them, choosing instead to

 74 RESPONSIVE WEB DESIGN

design compelling screen- or print-speci+c stylesheets. And
when capable small-screen browsers +nally did appear, there
weren’t a lot of handheld CSS +les scattered about the web. As
a result, many mobile browser makers decided to default to
reading screen-based stylesheets.

But what’s more, media types paint with an incredibly
broad brush. Is one handheld stylesheet really suited to ad-
dress the challenges of designing for an iPhone and a +ve year-
old feature phone?

Enter the media query

Realizing some of the failings of media types, the W3C used
their work on CSS3 to take another crack at the problem.
The result was media queries (http://bkaprt.com/rwd/27/), an
incredibly robust mechanism for identifying not only types of
media, but for actually inspecting the physical characteristics
of the devices and browsers that render our content.

Let’s take a look:

@media screen and (min‐width: 1024px) {

 body {

 font‐size: 100%;

 }

}

Now, every media query—including the one above—has two
components:

1. Each query still begins with a media type (screen), drawn
from the CSS2.1 speci+cation’s list of approved media types
(http://bkaprt.com/rwd/26/).

2. Immediately after comes the query itself, wrapped in pa-
rentheses: (min‐width: 1024px). And our query can, in
turn, be split into two components: the name of a feature
(min‐width) and a corresponding value (1024px).

Think of a media query like a test for your browser. When a
browser reads your stylesheet, the screen and (min‐width:

http://bkaprt.com/rwd/27/
http://bkaprt.com/rwd/26/

 MEDIA QUERIES 75

1024px) query asks two questions: +rst, if it belongs to the
screen media type; and if it does, if the browser’s viewport is
at least 1024 pixels wide. If the browser meets both of those
criteria, then the styles enclosed within the query are ren-
dered; if not, the browser happily disregards the styles, and
continues on its merry way.

Our media query above is written as part of an @media
declaration, which enables us to put queries directly inside a
stylesheet. But you can also place queries on link elements by
inserting them into the media attribute:

<link rel="stylesheet" href="wide.css" media="screen and

(min‐width: 1024px)" />

Or you can attach them to @import statements:

@import url("wide.css") screen and (min‐width: 1024px);

I personally prefer the @media approach since it keeps your
code consolidated in a single +le, while reducing the num-
ber of extraneous requests the browser has to make to your
server.

But no matter how you write your queries, the result in
each scenario is the same: if the browser matches the media
type and meets the condition outlined in our query, it applies
the enclosed CSS. Otherwise, it won’t.

Meet the features

It’s not just about testing for width and height. There are a
host of features listed in the speci+cation our queries can test.
But before we dive in, it’s worth noting that the language used
to describe the features can be a bit . . . dense. Here are two
quick guidelines that helped me sort it out:

1. In the spec’s language, every device has a “display area” and
“rendering surface.” Clear as mud, that. But think of it this
way: the browser’s viewport is the display area; the entire
display is the rendering surface. So on your laptop, the dis-

 76 RESPONSIVE WEB DESIGN

play area would be your browser window; the rendering
surface would be your screen. (I don’t makes the terms. I
just explains ’em.)

2. To test values above or below a certain threshold, some
features accept min‐ and max‐ pre+xes. A +ne example is
width: you can serve CSS conditionally to viewports above
1024 pixels by writing (min‐width: 1024px), or below
1024 pixels with (max‐width: 1024px).

Got all that? Fantastic. With those two points out of the way,
let’s dive into the features the speci+cation says we can use in
our queries (http://bkaprt.com/rwd/28/) (table 4.1).

FEATURE NAME DEFINITION HAS min‐ AND
max‐ PREFIXES

width The width of the display
area.

height The height of the display
area.

device‐width The width of the device’s
rendering surface.

device‐height The height of the
device’s rendering
surface.

table 4.1: A list of the device features we can test in our media queries.

http://bkaprt.com/rwd/28/

 MEDIA QUERIES 77

FEATURE NAME DEFINITION HAS min‐ AND
max‐ PREFIXES

orientation Accepts portrait or
landscape values.

aspect‐ratio Ratio of the display
area’s width over its
height. For example: on
a desktop, you’d be able
to query if the browser
window is at a 16:9
aspect ratio.

device‐aspect‐

ratio

Ratio of the device’s
rendering surface width
over its height. For
example: on a desktop,
you’d be able to query if
the screen is at a 16:9
aspect ratio.

color The number of bits per
color component of the
device. For example, an
8-bit color device would
successfully pass a query
of (color: 8). Non-
color devices should
return a value of 0.

color‐index The number of entries
in the color lookup table
of the output device.
For example, @media
screen and (min‐

color‐index: 256).

 78 RESPONSIVE WEB DESIGN

FEATURE NAME DEFINITION HAS min‐ AND
max‐ PREFIXES

monochrome Similar to color, the
monochrome feature
lets us test the number
of bits per pixel in a
monochrome device.

resolution Tests the density of the
pixels in the device,
such as screen and
(resolution:

72dpi) or screen and
(max‐resolution:

300dpi).

scan For tv-based browsing,
measures whether the
scanning process is
either progressive or
scan.

grid Tests whether the device
is a grid-based display,
like feature phones with
one .xed-width font.
Can be expressed simply
as (grid).

What’s really exciting is that we can chain multiple queries
together with the and keyword:

@media screen and (min‐device‐width: 480px) and

(orientation: landscape) { … }

This allows us to test for multiple features in a single query,
creating more complex tests for the devices viewing our
designs.

 MEDIA QUERIES 79

Know thy features

Feeling drunk with power yet? Well, I should take this oppor-
tunity to mention that not all @media-aware browsers support
querying for all features outlined in the speci+cation.

Here’s a quick example: when Apple’s iPad +rst launched,
it shipped with media query support for orientation.
That meant you could write orientation: landscape or
 orientation: portrait queries to conditionally serve up
CSS to the device, depending on how it was being held. Cool,
no? Sadly, the iPhone didn’t support the orientation query
until an OS upgrade arrived a few months later. While each
device allowed the user to change its orientation, the iPhone’s
browser didn’t understand the queries for that particular
feature.

The moral of this story? Research your target devices and
browsers thoroughly for the query features they do support,
and test accordingly.

But while support is still developing among modern brows-
ers and devices, media queries already give us an incredibly
broad vocabulary, one we can use to articulate how we’d like
our designs to appear in various devices and browsers.

A MORE RESPONSIVE ROBOT

And this is why media queries are the +nal component of a
responsive website. We’ve spent two chapters implementing
our *exible, grid-based layout—but this is only our founda-
tion. As that layout scales up or down, we can use media
queries to correct any visual imperfections that crop up as the
viewport reshapes itself.

What’s more, we can use media queries to optimize the dis-
play of our content to best meet the needs of the device, creat-
ing alternate layouts tailored to di)erent resolution ranges.
By conditionally loading style rules that target these ranges,
media queries allow us to create pages that are more sensitive
to the needs of the devices that render them.

In other words, by combining *exible layouts and media
queries, we’ll +nally be able to make our sites responsive.

Let’s get started.

 80 RESPONSIVE WEB DESIGN

A room with a viewport

We’ve already identi+ed a number of stress points in our de-
sign. But before we start applying our media queries, we need
to make one +nal tweak to our markup.

When Apple launched the iPhone in 2007, they cre-
ated a new attribute value for Mobile Safari’s meta element:
 viewport (http://bkaprt.com/rwd/29/). Why? Well, the dimen-
sions of the iPhone’s display is 320×480, but Mobile Safari
actually displays web pages at a width of 980 pixels. If you’ve
ever visited the New York Times (http://nytimes.com) on a
WebKit-enabled phone (fig 4.9), then you’ve seen this behav-
ior in action: Mobile Safari is drawing the page upon a 980px-
wide canvas, and then shrinking it to +t within your phone’s
320×480 display.

Using the viewport tag allows us to control the size of that
canvas, and override that default behavior: we can dictate
exactly how wide the browser’s viewport should be. For ex-
ample, we could set our pages at a +xed width of 320px:

<meta name="viewport" content="width=320" />

Since being introduced by Apple, a number of mobile browser
makers have adopted the viewport mechanic, creating some-
thing of a de facto standard. So let’s incorporate it into our
soon-to-be responsive design. But instead of declaring a +xed
pixel width, we’re going to take a more resolution-agnostic
approach. In the head of our HTML, let’s drop in this meta
element:

<meta name="viewport" content="initial‐scale=1.0,

width=device‐width" />

The initial‐scale property sets the zoom level of the
page to 1.0, or 100%, and helps ensure some consistency
across small-screen, viewport-aware browsers. (For more
information on how scaling works on di)erent displays, I rec-
ommend Mozilla’s explanation: http://bkaprt.com/rwd/30/.)

But the important bit for us is the width=device‐width
setting, which makes the width of the browser’s viewport

http://nytimes.com
http://bkaprt.com/rwd/29/
http://bkaprt.com/rwd/30/

 MEDIA QUERIES 81

equal to the width of the device’s screen. So on an iPhone, for
example, Mobile Safari’s layout area wouldn’t default to 980px
anymore. Instead, it would be 320 pixels wide in portrait
mode; in landscape, 480 pixels wide.

With this value in place, we can use max‐width and min‐
width to look for resolution ranges below or above certain
resolution thresholds, and conditionally load in CSS designed

fig 4.9: By default, Mobile
Safari renders web content at
980px wide—even though its
display is 320px wide when
held in portrait mode.

 82 RESPONSIVE WEB DESIGN

for those ranges. What’s more, this allows all query-aware
browsers to take advantage of our media queries, making
the design responsive for all users—whether they’re using
phones, tablets, desktop computers, or laptops.

Okay, enough of my jabbering. Let’s see this in action.

MEDIA QUERIES IN ACTION

Remember those large, imposing headlines (fig 4.10)? Well,
here’s the CSS that currently styles them:

.main‐title {

 background: #000;

 color: #FFF;

 font: normal 3.625em/0.9 "League Gothic", »

 "Arial Narrow", Arial, sans‐serif; /* 58px / 16px */

 text‐transform: uppercase;

}

I’ve left out a few presentational properties, because what
I’m most concerned about is just how stupidly huge those
headlines are at smaller resolutions. They’re set in the stately
League Gothic (http://bkaprt.com/rwd/31/), colored in white
(color: #FFF) on a black background (background: #000).
And in case there was any doubt that these headlines were
meant to be taken very seriously, they’re displayed in uppercase

fig 4.10: Here’s
our high-impact
headline treatment,
looking all impactful.

http://bkaprt.com/rwd/31/

 MEDIA QUERIES 83

through a dash of text‐transform, and then sized at an im-
posing 3.625em, or 58px.

Now, that treatment works well enough. But as we’ve just
seen, it doesn’t look great once we’ve less real estate to work
with. Whether viewed in narrower browser windows or on
smaller device displays, that design just doesn’t scale.

So let’s +x that.
First, we’ll create an @media block somewhere after our

initial .main‐title rule, one that queries for a narrower reso-
lution range:

@media screen and (max‐width: 768px) { … }

In this query, we’ve asked that the browser render the en-
closed CSS only if its viewport is no wider than 768 pixels.
Why 768px? Well, media query-aware phones, as well as most
recent tablets, fall well beneath this threshold. Or at least, they
do when held a certain way: for example, the iPad’s resolution
is 768px across when held in portrait mode, but 1024px when
held in landscape mode.

But since we’re using max‐width, not max‐device‐width,
narrower browser windows on your desktop or laptop will
apply this “small screen”-friendly range as well. (Remember:
width and height measure the viewport or browser window,
whereas device‐width and device‐height measure the di-
mensions of the entire screen.)

With this query in place, we can start targeting the ele-
ments of our design that don’t scale down that well. Let’s be-
gin by rethinking our oversized headline treatment. To do so,
we’ll place a .main‐title rule inside our media query, over-
writing the CSS properties that are causing us headaches:

@media screen and (max‐width: 768px) {

 .main‐title {

 font: normal 1.5em Calibri, Candara, Segoe, »

 "Segoe UI", Optima, Arial, Helvetica, »

 sans‐serif; /* 24px / 16px */
 }

}

 84 RESPONSIVE WEB DESIGN

Our +rst .main‐title rule is still applied by all browsers
reading our CSS. But for narrower browser windows and
devices—speci+cally, those no wider than 768 pixels—the sec-
ond rule is applied as well, overriding its predecessor. We’ve
made two changes of note here: +rst, we’ve set a smaller font-
size on the .main‐title element, changing it from 3.625em
(roughly 58px) to a much smaller 1.5em, or 24px, that feels
more appropriate on smaller displays.

Secondly, the typeface we were initially using for our head-
lines—our beloved League Gothic—doesn’t scale down very
well to that size (fig 4.11). So I’ve decided to change the font‐
family stack itself (Calibri, Candara, Segoe, "Segoe UI",
Optima, Arial, Helvetica, sans‐serif), which feels a bit
more readable (fig 4.12).

Now, you’ve probably noticed that we didn’t have to re-
write the other properties from the +rst .main‐title rule. As
a result, the black background color, all-caps text‐ transform,
and white color still apply to our miniaturized headlines. Our
query only overwrites the features we don’t want.

fig 4.12: Less sexy than
League Gothic? Most
things are. Still, it’s
much more legible, and
works with the design.

fig 4.11: League
Gothic, lovely though
it is, shines best as
display copy. But here,
it’s a little too tiny.

 MEDIA QUERIES 85

And presto: by quickly applying a media query, we’ve
whipped up a headline treatment that feels much more appro-
priate for smaller displays (fig 4.13).

But this is just the beginning. Not only can we +ne-tune
our typography to respond to changes in resolution, we can
also tackle our larger design problems as well.

Thinking in miniature

In fact, let’s begin by building on our new media query, and
make a slight change to our page’s layout. Remember our *ex-
ible #page container from Chapter 2? Here’s what its CSS cur-
rently looks like:

#page {

 margin: 36px auto;

 width: 90%;

}

fig 4.13: Our default
headline view above,
with the media query-
corrected version
below.

 86 RESPONSIVE WEB DESIGN

Our container’s currently set to 90% of the browser win-
dow, and centered horizontally (margin: 36px auto). Works
great, but let’s add a rule inside our existing media query
to tweak its behavior once we start falling below our initial
resolution:

@media screen and (max‐width: 768px) {

 #page {

 position: relative;

 margin: 20px;

 width: auto;

 }

}

Below 768px, we’re instructing the #page element to occupy
the full width of the browser window, save for a +xed 20px-
wide margin around its edges. A minor change, but this will
a)ord us a bit more space at smaller screen resolutions.

With our container sorted, we can turn our attention to the
content area.

@media screen and (max‐width: 768px) {

 #page {

 margin: 20px;

 width: auto;

 }

 .welcome,

 .blog,

 .gallery {

 margin: 0 0 30px;

 width: auto;

 }

}

This new rule selects the three top-level content modules—
our introduction (.welcome), the blog (.blog), and photo gal-
lery (.gallery)—and disables their horizontal margins, mak-
ing them occupy the full width of #page.

 MEDIA QUERIES 87

And just like that, we’ve linearized our page’s layout, mak-
ing it prime for reading on a smaller screen (fig 4.14). Can I
get a high +ve?

…no? What’s that, you say? There’s still a freakishly over-
sized image at the top of our page (fig 4.15)?

fig 4.14: Our content’s
been linearized with two
extra rules. Neat! But
there’s something amiss . . .

fig 4.15: . . . speci.cally,
that intro image still
needs work.

 88 RESPONSIVE WEB DESIGN

Well, okay. I suppose we can clean that up. If it’s really both-
ering you, I mean. But before we do, it’s probably worth tak-
ing a quick look at the markup for that lead image, designed to
be part of a (yet-to-be-implemented) slideshow module.

<div class="welcome section">

 <div class="slides">

 <div class="figure">

 <div class="figcaption">…</div>

 </div><!‐‐ /end .figure ‐‐>

 <ul class="slide‐nav">

 Previous

 Next

 </div><!‐‐ /end .slides ‐‐>

 <div class="main">

 <h1 class="main‐title">You can never be »

 too sure.</h1>

 </div><!‐‐ /end .main ‐‐>
</div><!‐‐ /end .welcome.section ‐‐>

There’s a fair bit of HTML here, but basically we’ve created a
.welcome module to contain our image as well as the introduc-
tory text that follows it (.main). Our image is part of a .figure
block, with the img itself wrapped in a b element, which will
act as a kind of “hook” for our CSS.

Feel a bit crufty to you? I can see where you’re coming
from. But that b element, silly though it might appear, actually
handles a fair bit of layout for us. Here’s the relevant CSS:

.slides .figure b {

 display: block;

 overflow: hidden;

 margin‐bottom: 0;

 width: 112.272727%; /* 741px / 660px */

}

 MEDIA QUERIES 89

.slides .figure b img {

 display: block;

 max‐width: inherit;

}

First, we’ve set overflow to hidden on the b element, creat-
ing a container that will crop any oversized content. But cur-
rently, our *exible images will simply resize themselves as
the b element does, preventing that nice crop e)ect. So we’ve
disabled the max‐width: 100% scaling on our slideshow im-
ages (max‐width: inherit). As a result, our big robot picture
will simply get cropped if it’s wider than the b element that
contains it.

You might have noticed that the width of our b element is
actually larger than 100%. We’ve actually used our old target
÷ context = result formula to create an element larger than
the .welcome module, allowing the enclosed image to extend a
bit o) to the right.

But as my luck would have it, none of these e)ects work
especially well at lower resolutions. (Related: I have awful
luck.) So let’s add a bit more to the end of our media query:

@media screen and (max‐width: 768px) {

 .slides .figure b {

 width: auto;

 }

 .slides .figure b img {

 max‐width: 100%;

 }

}

The +rst rule sets the width of our b container to auto,
making it the same width as its container. The second
rule actually reinstates the max‐width: 100% behavior we
discussed in Chapter 3, once again making the image expand
and contract as its container does. Taken together, these two
simple little rules do quite a bit, bringing our unruly image
back in line with its container and, by extension, the rest of

 90 RESPONSIVE WEB DESIGN

our design (fig 4.16). I don’t know about you, but I’m already
breathing a sigh of relief.

fig 4.17: “Contact Us,” why do you hate us so?

fig 4.16: Our image has snapped into place. Relief: I feel it.

 MEDIA QUERIES 91

Still, there’s one more item we should tend to before put-
ting our feet up. See our navigation up top? It’s still feeling
incredibly cramped. What’s more, if we bring our viewport in
even slightly, some decidedly un-awesome wrapping starts to
occur (fig 4.17).

The masthead markup is fairly straightforward:

<h1 class="logo">

 <i></i>

</h1>

<ul class="nav nav‐primary">

 <li id="nav‐blog">The ’Bot Blog

 <li id="nav‐rated">Top Rated

 <li id="nav‐droids">Droids of the Day

 <li id="nav‐contact">Contact Us

<!‐‐ /end ul.nav.nav‐primary ‐‐>

That’s right: we’ve marked up our logo with an h1, and an un-
ordered list for the navigation. And, continuing in my oh-so-
imaginative streak, they’ve been classed as .logo and .nav‐
primary, respectively. But what about the CSS?

.logo {

 background: #C52618 url("logo‐bg.jpg");

 float: left;

 width: 16.875%; /* 162px / 960px */
}

.nav‐primary {

 background: #5E140D url("nav‐bg.jpg");

 padding: 1.2em 1em 1em;

}

 92 RESPONSIVE WEB DESIGN

.nav‐primary li {

 display: inline;

}

The styles are fairly modest. We’re applying background
images to both elements, but there’s not much to the layout
itself: we’re *oating the image to the left, causing it to over-
lap the navigation. And the individual list items inside our
.nav‐primary list are simply set to display: inline. Still,
it works—at least until our page becomes narrow enough to
cause our inline elements to wrap.

Into a media query we go:

@media screen and (max‐width: 768px) {

 .logo {

 float: none;

 margin: 0 auto 20px;

 position: relative;

 }

 .nav‐primary {

 margin‐bottom: 20px;

 text‐align: center;

 }

}

What we’ve done is to disable the float we’d initially set
on our .logo, and instead centered it horizontally above
our menu. And .nav‐primary has been set to text‐align:
 center, which centers our navigation items within it. Now as
modi+cations go, these are pretty minor—the change, howev-
er, is fairly noticeable (fig 4.18). Both the logo and our primary
navigation are isolated on their own rows, with the proper
priority accorded to each.

Personally, I’m pretty pleased with the way this looks—but
we’re not in the clear yet. Glancing over at the navigation, it
looks like things are fairly tight at the moment: there’s just not
a lot of space left for our navigation items. In fact, if we bring

in our screen by even a tiny amount, we’re again facing some
unseemly line wrapping (fig 4.19).

(I appear to be on some sort of personal crusade against
wrapping text. I don’t know why.)

We’ve uncovered another breaking point, one that isn’t
+xed by simply moving the logo up to its own row. So let’s
create another media query, one primed to deal with just this
contingency:

@media screen and (max‐width: 768px) {

 …

}

@media screen and (max‐width: 520px) {

 .nav‐primary {

 float: left;

 width: 100%;

 }

fig 4.18: We can
dramatically reorient
the masthead at smaller
resolutions, giving both our
logo and the navigation a
bit more room to breathe.

 MEDIA QUERIES 93

fig 4.19: Okay, this is
starting to get silly.

 94 RESPONSIVE WEB DESIGN

 .nav‐primary li {

 clear: left;

 float: left;

 width: 48%;

 }

 li#nav‐rated,

 li#nav‐contact {

 clear: right;

 float: right;

 }

 .nav‐primary a {

 display: block;

 padding: 0.45em;

 }

}

For even smaller screens—speci+cally, those narrower than
520 pixels—we’ve *oated each li inside of .nav‐primary,
choosing to float: right the second and fourth menu items.
The end result is a two-by-two grid of our navigation items,
one that’s more resilient to changes in viewport size than our
display: inline approach (fig 4.20).

It’s worth pointing out that we didn’t have to rewrite any
of the rules from our previous query (screen and (max‐
width: 768px)) in this one. That’s because screens that meet
our new “narrower than 520px” requirement also meet the

fig 4.20: I probably
shouldn’t tell you
how excited I am that
our navigation grid
is considerably more
resilient to resolution
changes. So I won’t.

 MEDIA QUERIES 95

“narrower than 768px” requirement. In other words, rules
from both queries are applied at the smallest end of the
resolution spectrum. As a result, our second query only
needs to concern itself with the design problems unique to
viewports no wider than 520px.

And there we are (fig 4.21). With some additional tweak-
ing to the internals of our page, we’ve +nally got a design that
responds to the context it’s viewed in. We’re no longer locked
in to the grid, layout, or type we originally designed for one

fig 4.21: Our responsive design is shaping up beautifully, scaling on—and beyond—
the desktop.

 96 RESPONSIVE WEB DESIGN

speci+c resolution range. When layered on top of our *exible
layout, media queries allow us to address the design problems
that result from those shrinking viewports.

This layout goes to eleven

But responsive web design isn’t just about making designs
accessible to smaller screens. You might recall that our de-
sign had a signi+cant number of issues when it was viewed
in a maximized browser window: images grew to unseemly
sizes while lines of text became uncomfortably long, our grid
stretched beyond the limits of usefulness (figs 4.6–4.8). Now,
we could impose some sort of outer limit on our design, per-
haps with a max‐width set in ems or pixels. But let’s instead
treat this as an opportunity to design for another resolution
range.

First, we’ll begin by introducing another media query to do
just that:

@media screen and (max‐width: 768px) {

 …

}

@media screen and (max‐width: 520px) {

 …

}

@media screen and (min‐width: 1200px) {

 …

}

Our +rst media query set a resolution ceiling of 768 pixels: in
other words, devices and browser windows wider than that
max‐width limit would simply ignore the enclosed CSS. We
quickly followed that up with another query for an even nar-
rower range of 520px, once again using max‐width to do so.

For our next query, we’re instead using min‐width to set
1200px as a baseline width requirement for all incoming

 MEDIA QUERIES 97

browsers and devices. If they’re wider than 1200 pixels, then
they’ll apply the enclosed styles; otherwise, they’ll simply ig-
nore the CSS, and go blithely about their business.

So let’s roll up our sleeves and set to work on a widescreen-
friendly layout:

@media screen and (min‐width: 1200px) {

 .welcome,

 .blog,

 .gallery {

 width: 49.375%;

 }

 .welcome,

 .gallery {

 float: right;

 margin: 0 0 40px;

 }

 .blog {

 float: left;

 margin: 0 0 20px;

 }

}

In the live Robot site (http://responsivewebdesign.com/robot),
you’ll see a bunch of other changes that occur on this wides-
creen layout. But these three rules are really the critical ones.
We’re taking our three main content modules (.welcome,
.blog, and .gallery), and setting them to roughly half
(49.375%) the width of the entire page. Then, we’re *oating
the .welcome and .gallery modules o) to the right, and the
blog to the left. The result? A design that’s perfectly primed
for reading on larger displays (fig 4.22). Our over-long line
lengths have been reined in, and the blog—the key piece of
content—has been brought higher on the page, making it con-
siderably more accessible.

In other words, our responsive design is +nished.

http://responsivewebdesign.com/robot

 98 RESPONSIVE WEB DESIGN

A NOTE ABOUT COMPATIBILITY

After covering media queries for not a few pages, I suppose
we should brie*y quash a few dreams—I mean, um, we
should probably talk about browser support.

The good news? Media queries enjoy remarkably broad
support in modern desktop browsers. Opera has supported
media queries since version 9.5, Firefox 3.5 and above sup-
ports them, as do WebKit-based desktop browsers like Safari
3+ and Chrome. Even Internet Explorer 9 (http://bkaprt.com/
rwd/32/) supports media queries (http://bkaprt.com/rwd/33/)!
Somebody pinch me.

And moving beyond the desktop, things are also look-
ing good for media queries. WebKit-based mobile browsers,
such as Mobile Safari, HP’s webOS, and Android’s browser all
support media queries. And as reported by Peter-Paul Koch
(http://bkaprt.com/rwd/34/), Opera Mobile and Opera Mini are
on the @media bandwagon, as are Mozilla’s forays into mobile

fig 4.22: We’ve revisited our design, considering how widescreen readers might best
experience it—and all with a quick media query.

http://bkaprt.com/rwd/32/
http://bkaprt.com/rwd/32
http://bkaprt.com/rwd/33/
http://bkaprt.com/rwd/34/

 MEDIA QUERIES 99

browsing. And with Windows Phone due to get IE9 in 2011
(http://bkaprt.com/rwd/35/), we’re facing a browser landscape
that enjoys widespread support for media queries, which is
incredibly exciting.

But sadly, “widespread” doesn’t mean “universal.” In
desktop-based browsers older than the version numbers listed
above, we’re out of luck. And yes, Internet Explorer doesn’t
provide native media query support in versions 8 and be-
low—so that means the (ahem) venerable IE6 is still a very real
problem. And while many modern small screen devices o)er
decent support, some widely used browsers don’t understand
media queries, like IE Mobile and those on older BlackBerrys
(http://bkaprt.com/rwd/36/).

So things are far from rosy. But that doesn’t mean that
responsive layouts are a pipe dream, however. First and
foremost, there are a number of JavaScript-based solutions
that patch older browsers’ lack of support. The descriptively-
named css3‐mediaqueries.js library (http://bkaprt.com/
rwd/37/) o)ers to do just that, described as a solution “to make
IE5+, Firefox 1+ and Safari 2 transparently parse, test, and ap-
ply CSS3 Media Queries.” It’s very much an early release, and
one that hasn’t seen a lot of active development, but I can say
that it’s worked quite well for me.

More recently, I’ve been using a script called respond.js
(http://bkaprt.com/rwd/38/), a nimble little library developed
by Scott Jehl. Where css3‐mediaqueries.js is incredibly
feature-rich, almost exhaustively so, Respond simply patches
support for min‐width and max‐width queries in older brows-
ers. And that works perfectly for most of the queries I write
these days. Now, it’s worth mentioning that respond.js relies
on a slight hack to work as quickly as it does, requiring de-
signers to add a specially formatted CSS comment at the end
of every media query, like so:

@media screen and (max‐width: 768px) {

 …

}/*/mediaquery*/

http://bkaprt.com/rwd/37/
http://bkaprt.com/rwd/37
http://bkaprt.com/rwd/35/
http://bkaprt.com/rwd/36/
http://bkaprt.com/rwd/38/

 100 RESPONSIVE WEB DESIGN

@media screen and (max‐width: 520px) {

 …
}/*/mediaquery*/

@media screen and (min‐width: 1200px) {

 …

}/*/mediaquery*/

Why the extra comment? Well, css3‐mediaqueries.js
dedicates a lot of code to understanding how style sheets are
structured: it can open up our CSS, and immediately tell the
di)erence between a curly brace that’s ending a CSS rule, and
the +nal one of an @media block. Respond doesn’t care about
all that: instead, by looking for that little comment, it can grab
our queries faster than most other scripts out there.

In fact, by adding that comment to the end of the Robot
site’s queries, and dropping the respond.js library into the
head of our page, we’ve now got a responsive layout work-
ing beautifully in older, query-blind browsers like Internet
Explorer 7 (fig 4.23).

Now, I’m not one to rely on JavaScript, and I suggest you
take the same approach. We can quote stats at each other until
we’re blue in the face, but there’s simply no guarantee that
a user will have JavaScript available in their browser. They
might be working on a desktop or laptop that’s locked down
by draconian IT security measures. And once we start look-
ing beyond the desktop, to mobile phones and other devices,

fig 4.23: With our JavaScript patch in place, older browsers like IE now have some
semblance of support for media queries.

 MEDIA QUERIES 101

JavaScript support is notoriously scant, bordering on nonexis-
tent in many devices.

In the hopes of addressing those issues, we’ll spend some
time in Chapter 5 discussing less JavaScript-reliant work-
arounds. But ultimately, it’s completely understandable if
JavaScript-based patches don’t appeal to you. However, that
only highlights the need to build your responsive design atop
a *exible foundation, ensuring your design has some measure
of device- and resolution-independence.

WHY GO FLEXIBLE?

If you’ll permit me one fanboyish outburst: media queries are
downright awesome. They let us conditionally serve up CSS
based on the capabilities of the device rendering our sites, al-
lowing us to more fully tailor our design to our users’ reading
environment.

However, media queries alone do not a responsive design make.
A truly responsive design begins with a *exible layout, with
media queries layered upon that non-+xed foundation. There
are a number of arguments for this, most notably that a *ex-
ible layout provides a rich fallback for JavaScript- and @media-
blind devices and browsers.

But that’s not the only reason. The software company
37signals recently began experimenting with a responsive de-
sign for one of their applications, and had this to say (http://
bkaprt.com/rwd/39/):

As it turned out, making the layout work on a variety of devices
was just a matter of adding a few CSS media queries to the
"nished product. The key to making it easy was that the layout
was already liquid, so optimizing it for small screens meant
collapsing a few margins to maximize space and tweaking the
sidebar layout in the cases where the screen is too narrow to
show two columns.

In other words, starting from a *exible foundation means
we have less code to produce. When working with media que-
ries, +xed-width layouts often need to be re-coded at every

http://bkaprt.com/rwd/39
http://bkaprt.com/rwd/39/

 102 RESPONSIVE WEB DESIGN

resolution breakpoint, whereas a design built with percent-
ages, not pixels, maintains its proportions from one resolution
to the next. As we’ve seen in this chapter, we can selectively
remove or change the properties at each breakpoint, optimiz-
ing our layout with a few quick edits.

What’s more, a *exible layout is better prepared for devices
that haven’t yet launched. A year ago, mentioning “tablet”
would conjure up images of the iPad in the listener’s mind.
But now, seven inch tablets like Samsung’s Galaxy Tab are
beginning to ship, and devices like the Kindle and Nook are
also carrying fantastic little browsers. We simply can’t keep
up with the di)erent resolutions entering the marketplace. A
*exible foundation allows us to step back from targeting indi-
vidual resolutions, and better prepare our designs for devices
that haven’t even been imagined yet.

Establish constraints as needed

With that said, nobody knows your design—and its users—
better than you do. If you feel that placing a max‐width on
an element will help it maintain its integrity, go right ahead.
Here’s 37signals describing their responsive experiments again
(http://bkaprt.com/rwd/39/):

The CSS max‐width property seems almost forgotten in the web
designer’s toolbox since it wasn’t supported by Internet Explorer
6. With that restriction lifted, it’s the perfect complement
to a liquid layout, letting the content re-!ow naturally at a
variety of widths but not expanding to the point of absurdity
where extreme line lengths make reading a chore. It’s a great
compromise between liquid and "xed layouts.

I’m currently working on a responsive redesign project
where a similar discussion popped up. The design has a +xed
max‐width of 1200px, but is completely *exible below that
point. So why not make it completely *uid? Well, we’ve spent
a lot of time considering how the page looks when it passes
certain breakpoints. And the media queries we’ve put in place
re*ect that design thinking, ensuring the site is as pleasing

http://bkaprt.com/rwd/39/

fig 4.24: Dan Cederholm,
the web designer’s web
designer, decided to set a
max‐width of 960 pixels
on his newly responsive
redesign. And you know
what? It works.

 MEDIA QUERIES 103

to read on the latest build of Chrome as it is on an Android
phone or the Kindle’s browser. But ultimately, we decided
we didn’t have the audience to justify the time and resources
required to make a compelling widescreen design. So we de-
cided to introduce the max‐width constraint.

What’s that? You’d like to see a few live examples of the
marriage of max‐width and media queries? Well, I guess I’d
have to mention Dan Cederholm’s site (http://simplebits.com),
and design agency Happy Cog’s o?cial blog (http:// cognition.
happycog.com) (figs 4.24 and 4.25). Both are beautiful ex-
amples of this hybrid approach to *exible layouts, starting

fig 4.25: Those talented
scamps at Happy Cog
recently launched a
responsive blog design,
deciding a max‐width of 820
pixels was appropriate. The
result? It’s purty.

http://simplebits.com
http://cognition.happycog.com
http://cognition.happycog.com

 104 RESPONSIVE WEB DESIGN

with a *uid grid that’s eventually constrained by a pixel-based
max‐width.

Some designers prefer this method, maintaining that long
line lengths are too unruly and uncomfortable to read. And
frankly, they’re right—but the max‐width property is only
one solution to that problem. Take designer and illustrator
Jon Hicks’ site (fig 4.26), one of the +rst responsive redesigns
launched in 2010 (http://bkaprt.com/rwd/40/).

While there isn’t a max‐width constraining his design, Jon’s
instead tweaked the typography at di)erent resolution ranges,

fig 4.26: Jon Hicks’
responsive site is
completely /exible,
and a stunner at any
resolution.

fig 4.27: Instead
of relying on
max‐width, Jon
opted to adjust
his typography in
certain resolution
ranges, which
makes for a pleasing
measure and line
length no matter
how his blog is read.

http://bkaprt.com/rwd/40/

 MEDIA QUERIES 105

+nely tuning the leading and font‐size to ensure his words
are still a pleasure to read—all without placing any constraints
on his design (fig. 4.27).

In other words, *exibility doesn’t have to be a liabil-
ity. Instead, it can be another opportunity to practice our
craft, to better communicate with a certain class of users, or
to solve another set of problems a)ecting a particular type of
device.

But still, these are the kinds of decisions we constantly
make as designers, choosing between *exibility and control.
What responsive design shows us, however, is that it doesn’t
need to be a binary proposition; we can have designs founded
upon a *exible layout, while still including +xed-width ele-
ments (fig 4.28). So when and if my client decides their audi-
ence would bene+t from a widescreen layout, they could eas-
ily lift the current max‐width constraint, create another media
query, and design a compelling experience.

In other words, our designs can respond to our users’
needs as quickly as we need them to.

fig 4.28: Jon Hicks’
responsive “Shelf” theme
for WordPress and Tumblr
(http://bkaprt.com/rwd/41/)
has a beautifully /exible
layout, but contains
.xed-width containers for
di0erent kinds of entries.
(Love that horizontal
scrolling!)

http://bkaprt.com/rwd/41/

 106 RESPONSIVE WEB DESIGN

The Way is shaped by use,
But then the shape is lost.
Do not hold fast to shapes
But let sensation "ow into the world
As a river courses down to the sea.
— dao de jing, section 32, “Shapes”

by now, you have all the tools you need to start build-
ing responsive layouts. You’ve mastered the proportional
thinking behind the *exible grid, investigated a few strategies
for incorporating +xed-width media into your design, and
explored how media queries can bring our designs beyond the
desktop.

But up until this point, we’ve been looking at responsive
design in a vacuum. In this chapter, let’s look at some di)er-
ent ways to begin incorporating it into our work, as well as a
few paths to improve on some of the techniques we’ve already
discussed.

BECOMING
RESPONSIVE5

“

 BECOMING RESPONSIVE 107

A MATTER OF CONTEXT

As you begin experimenting, you’ll +nd that responsive de-
signs, when properly built, can provide your visitors with a
high level of continuity between di)erent contexts. That’s be-
cause, at its most basic level, responsive design is about serv-
ing one HTML document to countless browsers and devices,
using *exible layouts and media queries to ensure that design
is as portable and accessible as possible.

However, certain web designers argue against this ap-
proach, suggesting that di)erent devices should always be
served di)erent markup. In a rather lengthy blog post, mobile
developer James Pearce questions the merits of responsive
design (http://bkaprt.com/rwd/42/):

The fact that the user has a small screen in their hand is one
thing—the fact that it is in their hand at all is another. The fact
that the user may be walking, driving, or lounging is yet another.
In fact, it’s quite likely that they really deserve di#erent content
and services altogether—or, at least, a di#erently prioritized
version of the default desktop experience.

Je) Croft (http://bkaprt.com/rwd/43/) puts it much more suc-
cinctly:

By and large, mobile users want di#erent things from your
product than desktop users do. If you’re a restaurant, desktop
users may want photos of your place, a complete menu, and
some information about your history. But mobile users probably
just want your address and operating hours.

There are two prongs to this argument: +rst, that the device
implies a context, telling us whether the user is stationary or
mobile. From that context, we can create a class of users, and
infer a set of goals. In other words, mobile users will want
quicker access to di)erent tasks than they would if they were
on a desktop or laptop, where both time and bandwidth are
on their side.

http://bkaprt.com/rwd/42/
http://bkaprt.com/rwd/43/

 108 RESPONSIVE WEB DESIGN

Second, if the user’s priorities and goals do indeed di)er
from one context to the next, then serving one HTML docu-
ment to everyone won’t cut it. Take Je) ’s example: if the
restaurant site features photos prominently at the top of every
page, then chances are good that they’re near the top of the
HTML. Which means that a mobile visitor, when presented
with the same markup in a more linear fashion, will have to
do a considerable amount of scrolling just to +nd the hours of
operation they wanted.

For what it’s worth, I agree with these arguments—but up
to a point. It’s absolutely fair to assume a user’s context from
their device, but it’s just that: an assumption. For example,
much of my “mobile” browsing happens on the couch in my
living room, *ipping idly through sites on my wireless net-
work. Now, this isn’t just another of my “Ethan doesn’t have a
life” jokes: research has shown that a signi+cant percentage of
people use “the mobile web” from the comfort of their home
(http://bkaprt.com/rwd/44/, http://bkaprt.com/rwd/45/).

That’s not to say that the context question isn’t valuable, or
that we shouldn’t be thinking about these di?cult questions.
But we can’t simply infer a user’s context from a class of de-
vices—in many cases, the implementation of these separate,
“context-aware” sites can often be lacking (fig 5.1). Relying
upon all-too-convenient terms like “mobile” and “desktop”
is no substitute for conducting the proper research into how
your audience accesses your site: not only the devices and
browsers they use, but how, where, and why they use them.

But most importantly, responsive web design isn’t intended
to serve as a replacement for mobile web sites. Responsive de-
sign is, I believe, one part design philosophy, one part front-
end development strategy. And as a development strategy, it’s
meant to be evaluated to see if it meets the needs of the proj-
ect you’re working on. Perhaps there’s a compelling reason to
keep your site’s desktop and mobile experiences separate, or
perhaps your content would be better served by a responsive
approach. Only you and your users know for certain.

While I agree with mobile web designers who say that cer-
tain users of certain sites deserve di)erent content, I think the
reverse is also true: many sites can bene#t from serving one

http://bkaprt.com/rwd/44/
http://bkaprt.com/rwd/45/

 BECOMING RESPONSIVE 109

document up to multiple contexts or devices. And those are
perfect candidates for a responsive approach.

So how do you know if responsive design is right for you?

Know thy users’ goals

In early 2010 I worked on a site called Cog’aoke (fig 5.2),
designed to promote a karaoke event hosted by my then-em-
ployer. Its main purpose was to provide visitors with informa-
tion about the party, its sponsors, and its venue. But there was
an application component as well: visitors could sign up to
perform at the event, browse through the available catalog of
songs, and vote for other prospective performers.

We also decided that the site needed a mobile-friendly com-
ponent. But we envisioned something completely di)erent
from the desktop-speci+c site. We realized people stumbling

fig 5.1: When viewed on an iPad, Google Reader and Twitter currently default to their
“mobile” sites. Great design, but is it the right context?

 110 RESPONSIVE WEB DESIGN

to our event would need quick and ready access to the direc-
tions. Furthermore, we were going to have a live voting event
at the show, and invite the audience to rate their favorite
performer at a certain time—all through our site, accessed via
their mobile phone.

As we were planning the site, it helped us to think of the
desktop site as the “pre-game” experience. The mobile site, on
the other hand, was really intended for the night of the event,
for attendees who were physically present. So the goals of the
two di)erent contexts couldn’t have been more distinct.

With that in mind, it de+nitely would have been possible for
us to include all the markup for each context on every page of
the site. If we’d taken that route, every page would have had
the regular “desktop” content marked up in its HTML, as well
as the map, directions, and voting information for the mobile

fig 5.2: Behold Cog’aoke. Two di0erent contexts,
two di0erent sites.

 BECOMING RESPONSIVE 111

site. And with those two modes baked into every HTML page,
we could have used some combination of media queries and
display: none to deliver the two sites to the right devices.

But that wouldn’t have been the right approach. We real-
ized it would have been irresponsible of us to ask our visitors
to download all that extraneous HTML, marking up content
that they’d never see, much less bene+t from. And I don’t
say that just out of concern for mobile visitors: regardless of
whether our visitors were on a phone-or a desktop-based
browser, we would have been penalizing them with extra
markup.

MEET “MOBILE FIRST”

When you have a free moment (and a sti) drink in hand), I
recommend browsing through Merlin Mann’s “Noise to Noise
Ratio” Flickr set (http://bkaprt.com/rwd/46/). These screen
grabs showcase some of the most content-saturated pages on
the web: the pages are drowning in a sea of cruft. And the ac-
tual article, both paragraphs of it, is nigh un+ndable.

While the sites in Merlin’s gallery might be new to you,
I wager the problems they demonstrate are pretty familiar.
What’s more, I think this trend informs some of our precon-
ceptions about designing for “mobile” users: namely, we as-
sume mobile users need less content in part because desktop
users can tolerate more. After all, screens are larger, users
are often more stationary, and can generally better focus on
searching for the content they want.

But just because desktop users can sift through more con-
tent, does that mean they need to? In other words, why is
easy access to key tasks only the domain of mobile users?
Why can’t all users of our sites enjoy the same level of fo-
cused, curated content?

Toward the end of 2009, designer Luke Wroblewski +red
o) a little challenge to our industry, suggesting a website’s
mobile experience shouldn’t be an afterthought (http://
bkaprt.com/rwd/47/). Citing the explosive growth of mobile
web tra?c, as well as the exciting new technical capabilities
of modern phones, Luke suggests that instead today’s web

http://bkaprt.com/rwd/47
http://bkaprt.com/rwd/47/
http://bkaprt.com/rwd/46/

 112 RESPONSIVE WEB DESIGN

professionals should begin designing for mobile #rst.
“Mobile +rst” is a wonderful design philosophy. What’s

more, I’ve found it absolutely invaluable for the responsive
design projects I’ve worked on. As more browsers and devices
begin accessing our designs, and as our clients become inter-
ested in designing beyond the desktop, it’s a perfect oppor-
tunity to take a hard look at how we design for the web: our
processes and vocabulary, as well as the questions we ask and
the solutions we apply.

TOWARD A RESPONSIVE WORKFLOW

Of course, it’s the early days yet. Many designers, studios, and
agencies are still learning about responsive design. As a result,
we don’t have many “best practices” to share within our com-
munity. That’ll change over time, as we start thinking more
responsively in our work. So in the meantime, I thought I’d
share some of my experiences working with a more respon-
sive work*ow. Perhaps they’ll be helpful to you, and (more
likely) you’ll +nd a way to improve upon them.

As I write this, I’m working on the redesign of a large, con-
tent-rich site. Over the course of a given day, a reader might
access the site from home in the morning over co)ee, read an
article or two during their morning train commute, and pos-
sibly check in a few more times during the day.

Given the diversity of their readership, the client decided
that a responsive approach would be the most appropriate one
for their audience. So during the planning phases, the design
team has taken a hard look at every proposed piece of content
for the site, and asked one question: How does this content or
feature bene#t our mobile users?

Okay, maybe I should’ve made that sound a bit more excit-
ing—I never was especially good at marketing. But it’s a ques-
tion we’ve derived from the “mobile +rst” approach, and one
we’ve found incredibly useful as the site’s designed. Here’s
Luke’s rationale for the value of this thinking in site planning
(http://bkaprt.com/rwd/48/):

http://bkaprt.com/rwd/48/

 BECOMING RESPONSIVE 113

If you design mobile "rst, you create agreement on what matters
most. You can then apply the same rationale to the desktop/
laptop version of the web site. We agreed that this was the most
important set of features and content for our customers and
business—why should that change with more screen space?

It’s all too easy to +ll a desktop browser window with so-
cial media toolbars, links to related articles, battalions of RSS
links, and tag clouds galore. (This process is called “adding val-
ue,” I believe.) But when we’re forced to work with a screen
that’s 80% smaller than our usual canvas, nonessential content
and cruft quickly fall away, allowing us to focus on the truly
critical aspects of our designs.

In other words, designing for mobile devices +rst can en-
rich the experience for all users, by providing the element
often missing from modern web design: focus. That’s not
to say that our client’s pages are light on content, or lack-
ing in features. But by framing our design process with that
simple question, we’ve gained a handy acid test to apply
when considering each proposed element, each new piece of
functionality.

Identifying the breakpoints

Our design process kicks o) by surveying the di)erent de-
vices for which we’re planning to design. From that research,
we’ll compile a list of resolution breakpoints: horizontal widths
we’ll need to accommodate in our responsive design. For ex-
ample, our list might look like table 5.1.

That’s not to say that resolutions above or below this
threshold will be ignored, or that we won’t accommodate
some devices whose resolutions aren’t listed. (After all, the
responsive layout will be based on a *exible grid, so there’s
some resolution independence built in.) But building a list like
this helps de+ne a scope for our e)orts, allowing us to identify
the devices most commonly used by our audience, and how
best to test against their respective resolutions.

 114 RESPONSIVE WEB DESIGN

320 pixels For small screen devices, like phones, held in
portrait mode.

480 pixels For small screen devices, like phones, held in
landscape mode.

600 pixels Smaller tablets, like the Amazon Kindle (600×800)
and Barnes & Noble Nook (600×1024), held in
portrait mode.

768 pixels Ten-inch tablets like the iPad (768×1024) held in
portrait mode.

1024 pixels Tablets like the iPad (1024×768) held in landscape
mode, as well as certain laptop, netbook, and
desktop displays.

1200 pixels For widescreen displays, primarily laptop and
desktop browsers.

With that list in hand, it’s time for the design to begin in
earnest.

Iterative, collaborative design

Now, most design projects follow some version of the “wa-
terfall” project management work*ow, dividing the work into
distinct, task-based phases. The speci+cs might change from
one studio to the next, but there are usually four segments:
a planning phase, a design phase, a development phase, and
then, +nally, delivery of the +nished site. In each phase, docu-
ments or +les are created—for example, a site map and wire-
frames during the planning phase—which the client approves
before the next phase of work begins.

Again, the way you manage your projects might di)er
slightly. But for the design phase, the design team often mocks
up a number of pages in a graphics editor like Photoshop,

table 5.1: A list of example resolution breakpoints.

 BECOMING RESPONSIVE 115

Fireworks, or the like. And once those mockups are +nished
and approved, they’re handed o) to the development team,
ready to be produced into static HTML templates.

But for a responsive site, that process can quickly become a
bit unwieldy. Let’s pretend for a moment you’re redesigning a
site with only one page, so you knock out a mockup in your
favorite design application. But how do you communicate
to your client how that page will appear on a phone? Or an
iPad? Or a widescreen display? If you’ve the time, budget, and
resources, it might be feasible for you to design each of those
alternate views, presenting those comps to the client, gather-
ing feedback, and then revising each as needed. But if you’re
designing +fteen pages, or +fty, then it can quickly become

fig 5.3: We’ll begin
by reviewing a
.nished page comp,
asking questions
about how it should
respond to di0erent
devices and browsers.

 116 RESPONSIVE WEB DESIGN

impractical to produce every one of those mockups and their
alternate views.

Recently, the responsive projects I’ve worked on have had
a lot of success combining design and development into one
hybrid phase, bringing the two teams into one highly col-
laborative group. I refer to this new, Voltron-esque phase as
“designopment.” (No, not really.)

Our reviews begin with the design team presenting a page
mockup to the entire group. This will typically be a desktop-
centric design (fig 5.3), although occasionally we might start
with a more mobile-focused layout. The goal is to get a start-
ing point in front of the entire group, to kick o) a discussion
about how this design will need to accommodate di)erent
resolution ranges and input types. Questions tend to *y back
and forth pretty rapidly: “How do you envision this slideshow
working on a touch interface?” “Is this module always going
to be collapsed by default, or will desktop users need to see
more information?” “How will this element look (and func-
tion) if JavaScript isn’t available?”

The open questions are a really great forum for the team to
share ideas, to discuss how the design is intended to function
on di)erent displays, and to review any particularly complex
pieces of interaction. If any design feedback needs action,
then the design gets revised. But if the group feels comfort-
able, or if the revisions are su?ciently minor, then the devel-
opment team inherits the comps for some prototyping.

“Prototyping before the designs are +nal, you say?”
Absolutely, I say. Our goal is to get beyond the pixel limita-
tions of Photoshop, and begin building a design that can *ex
and grow inside a changing browser window, that can scale
to di)erent devices. So the development team quickly begins
producing a responsive design: converting the +xed grid into a
*uid one, discussing ways to *exibly handle di)erent types of
media, and then +nally applying the media queries that adapt
our design to di)erent resolution ranges.

Once our media queries are in place, we’re constantly re-
sizing our browser window to approximate how the designs
will hold up at di)erent resolution ranges (fig 5.4). Browser
resizing extensions, such as the one included in the Web

 BECOMING RESPONSIVE 117

Developer Toolbar for Firefox and Chrome (http://bkaprt.
com/rwd/49/), can be a huge help here; if you’ve established
a list of resolution breakpoints like the one in table 5.1, then
you can simply store them in the extension for quick access
later on (fig 5.5).

But as we discussed in the last chapter, resizing your
browser window is really an intermediary step. If you want
to test how your page is going to perform on a given device,
there’s no substitute for viewing it on the actual device. (If
you’re interested in setting up a mobile testing suite, I highly
recommend Peter-Paul Koch’s article on the “Smartphone
Browser Landscape,” available on A List Apart: http://bkaprt.
com/rwd/50/. Heck, even if you’re not looking to purchase a
small army of phones, it’s a great read.)

During this development process, a prototype begins to
take shape. It’s based on the initial mockup supplied by the
design team, of course, but as the development team codes

fig 5.4: As we’ve discussed, resizing your browser window is a great way to quickly test
your design. But it’s only the .rst step.

fig 5.5: The “Resize” menu in the
Web Developer Toolbar, with a few
frequently used viewport sizes.

http://bkaprt.com/rwd/49
http://bkaprt.com/rwd/49/
http://bkaprt.com/rwd/50/
http://bkaprt.com/rwd/50

 118 RESPONSIVE WEB DESIGN

they begin making recommendations about how the design
should respond to di)erent devices. In other words, dur-
ing this collaboration the developers act as designers, too;
they’re just designing in a di)erent medium. They’re making
design recommendations within the browser, rather than in
Photoshop—recommendations that will be shared, tested, and
vetted by the entire team.

Now, the prototype doesn’t have to be completely tested or
production-ready. Because once that template’s somewhat +n-
ished, we start another design review—but this time, the de-
sign and development teams are reviewing code, not comps.

The interactive design review

To prepare for this meeting, we’ll load up the prototype page
on several phones, tablets, laptops, and other target devices
(fig 5.6). When the meeting begins, the development team
will introduce the page to the group, and then let everyone
have at it. Because during the rest of the review, the entire
group experiments with the design: on laptops and desktops,
on phones and tablets. We’ll resize our browser windows,
swipe through photo galleries, and test how usable forms are
on both keyboards and touch screens.

But while everyone’s experimenting with the prototype,
we try to keep a steady *ow of conversation going. I’ve found
it helps if the development team has a list of questions that
came up as they were building the responsive design. Perhaps

fig 5.6: The devices used in the
jQuery Mobile testing suite.
(Courtesy Filament Group, Inc.,
http://bkaprt.com/rwd/51/.)

http://bkaprt.com/rwd/51/

 BECOMING RESPONSIVE 119

they noticed that a crucial link is a little too di?cult to hit on a
touch screen, or a maybe an animation is moving a little too
slowly on a particular desktop browser. Calling out areas of
interest or potential sticking points, and then asking for feed-
back, is a great way to get people talking about how well the
design performs, and how it generally feels.

Because ultimately, the purpose of these reviews is to help
vet the “live” design. After all, the initial mockup was used
as a blueprint, providing layout rules, a typographic guide,
and a pattern library; from there, the development team was
responsible for adapting the design into its more responsive
incarnation. In other words, we’re testing the design recom-
mendations made by the development team, and discussing
whether further re+nement is needed. That re+nement could
either be a revised mockup, or some tweaks in the template.
And once the meeting’s +nished, the two halves of the group
decamp with their respective feedback, and the process re-
peats itself. Review, design, build, and repeat.

Here’s a hypothetical example of how this back-and-forth
works. Let’s say the design team’s mocked up a global naviga-
tion module, which includes a couple key links and a search
+eld. And with that comp in hand, the development team’s
dutifully built the navigation into the template (fig. 5.7).

The design’s fairly straightforward, calling for two links
displayed inline, with the search +eld to their right. And in
making the design responsive, the development team settles
on a fairly modest solution for smaller displays, choosing to
give the search bar the full width of the page, and centering
the two links beneath it (fig. 5.8).

fig 5.7: The “desktop”
view of the newly designed
global navigation bar.

 120 RESPONSIVE WEB DESIGN

During the design review, a few design team members ask
about the smaller version of the global navigation, as some-
thing about the elements’ placement feels a bit o) to them.
The search bar is considerably more prominent, sure, but
some of the folks feel that maybe it’s too prominent, crowding
out the links beneath it. And in fact, once they started inter-
acting with the design on touch-enabled phones, they realize
it’s a little too easy to tap into the search +eld when trying to
activate a link.

So the coded version of the navigation isn’t quite work-
ing. And after discussing it for a bit, the design team comes
up with an alternate solution (fig 5.9). Instead of displaying
the search bar at smaller resolutions, they decide to collapse
it by default, making it appear as though it was just another
link in the menu. But when that label is tapped or clicked on,
the search bar appears as a dropdown beneath the rest of the
menu (fig 5.10).

That’s just one brief example of how this more collabora-
tive approach can work. The key is to make this design/devel-
opment cycle as iterative as it needs to be, with both groups
constantly re+ning their work, and then sharing it with the
group for review. For the project I’m working on, we’ve been
meeting weekly for our interactive design reviews, but we’re
constantly sharing sketches—whether in design or in code—
via email throughout the week.

fig 5.8: At smaller resolution
breakpoints, the links were initially
placed beneath the search bar.

 BECOMING RESPONSIVE 121

Ultimately, the goal is to close the gap between the tra-
ditional “design” and “development” cycles, to let the two
groups collaborate more closely to produce a +nished, respon-
sive design. This more agile approach has allowed the groups
I’ve worked on to use applications like Photoshop for design
direction and guidance, but then quickly move into our real
canvas: the browser.

fig 5.10: Our .nished
navigation bar, iteratively built
by designers and developers.

fig 5.9: After discussing the problems at hand, the design team comes up with an alternate
design for our problematic little navigation bar.

 122 RESPONSIVE WEB DESIGN

BEING RESPONSIVE, RESPONSIBLY

During our design/development cycle, the pages are con-
stantly being re+ned as we build them, with the goal of +nish-
ing the phase with production-ready templates. And as we
code our responsive design, we’ve found the philosophy of
“mobile +rst” to be incredibly important.

Throughout the book, we’ve been using the Robot or Not
site to demonstrate how a *uid grid, *exible images, and
media queries work together to provide a more responsive
approach to design. We began by taking our rigid mockup,
designed in Photoshop, and converting it into a *uid grid. As
we saw in Chapter 4, that caused no end of problems when
we started resizing our browser window: our initial design
wasn’t intended to scale beyond its original context. So we
introduced media queries to address those issues, and to pro-
vide alternate small- and wide-screen layouts. And +nally, for
browsers lacking native support for media queries, we includ-
ed the respond.js library to provide access to our alternate
designs.

However, this approach raises another very real prob-
lem: what if an @media-blind browser doesn’t have access to
JavaScript? In that case, they’d be forced to render our full,
desktop-centric design, regardless of whether that’s appro-
priate for their device. And for many mobile devices, that’s
exactly what they’d see: a design intended for a much wider
screen, shoehorned into a tiny space (fig 5.11).

And there’s another problem with the way we’ve built the
site. Here’s a brief snippet from the CSS:

.blog {

 background: #F8F5F2 url("img/blog‐bg.png") repeat‐y;

}

@media screen and (max‐width: 768px) {

 .blog {

 background: #F8F5F2 url("img/noise.gif");

 }

}

 BECOMING RESPONSIVE 123

First, we’re setting a background image on the .blog ele-
ment. (Speci+cally, the two-toned blog‐bg.png graphic we
used in Chapter 2 to create the illusion of two columns.) Then
for smaller displays, those narrower than 768px wide, we’re
instead placing a simple tiled GIF on the blog element, since
we’ve linearized the display of those narrower pages.

The problem with this approach is that some small screen
browsers, most notably Mobile Safari on the iPhone and the
iPad, will actually download both graphics, even if only one
is ultimately applied to the page. While smaller screens don’t
always equate to lower bandwidth, we’re currently punishing
users on smaller screens with the download of a much heavier
image than they’ll ever see.

Thankfully, these aren’t problems with responsive design
in and of itself—we just need to rethink the way we’ve imple-
mented it.

fig 5.11: No media queries?
No JavaScript? No good: our
/exible, desktop-friendly layout
tries to cram into a small space.

 124 RESPONSIVE WEB DESIGN

“Mobile "rst” meets media queries

Speaking broadly, responsive design is about starting from
a reference resolution, and using media queries to adapt it to
other contexts. A more responsible approach to responsive
design would mean building our stylesheet with “mobile +rst”
in mind, rather than defaulting to a desktop layout. So we’d
begin by de+ning a layout appropriate to smaller screens, and
then use media queries to progressively enhance our design as
the resolution increases.

In fact, I took this approach on my personal portfolio site
(http://ethanmarcotte.com). By default, the content is arranged
in a very linear manner, one friendly to mobile devices and
narrow browser windows (fig 5.12). But as the viewport wid-
ens, the grid becomes more complex and more asymmetrical
(fig 5.13). And at the highest end of the spectrum, the “full”
design +nally reveals itself: the layout becomes even more
complex, and some heavier assets, like that big abstract back-
ground image, are introduced (fig 5.14).

The design is still responsive, using all of the techniques
we’ve discussed thus far in this book: the layout is based on a
*uid grid, and the images still work well within that *exible
context. But in contrast to the Robot or Not site, I’m apply-
ing min‐width media queries to scale our design up through
the resolution spectrum. The basic structure of the stylesheet
looks something like this:

/* Default, linear layout */
.page {

 margin: 0 auto;

 max‐width: 700px;

 width: 93%;

}

/* Small screen! */

@media screen and (min‐width: 600px) { … }

/* "Desktop" */
@media screen and (min‐width: 860px) { … }

http://ethanmarcotte.com

 BECOMING RESPONSIVE 125

/* IT'S OVER 9000 */

@media screen and (min‐width: 1200px) { … }

The bulk of the stylesheet contains little else but color- and
type-related rules, providing a basic (but hopefully still attrac-
tive) design to all users. Then, four resolution breakpoints are
set in the media queries, for minimum viewport widths of
480px, 600px, 860px, and 1200px. And as the resolution scales

fig 5.12: The default, small
screen-friendly design.

 126 RESPONSIVE WEB DESIGN

up beyond those thresholds, the appropriate layout rules
are applied. But if a browser without media query support
accesses my site, they’re given an attractive, single-column
layout if our JavaScript patch isn’t available to them (fig 5.15).

This “mobile +rst” approach to building responsive tem-
plates ensures greater accessibility to our content, but doesn’t
make any assumptions about the capabilities of the device
or browser rendering our design. And after adopting it for a
number of client projects, I believe it’s the best, most bullet-
proof way to implement your responsive designs.

fig 5.13: At the
halfway mark,
some complexity
is introduced.

 BECOMING RESPONSIVE 127

REVISITING PROGRESSIVE ENHANCEMENT

A more thorough implementation of this approach would
be the recent redesign of Yiibu (http://yiibu.com), a mobile-
focused design studio. Bryan and Stephanie Rieger, Yiibu’s
founders, call the redesign a merger of “mobile +rst” and re-
sponsive design, and describe their approach thusly (http://
bkaprt.com/rwd/52/):

fig 5.14: Finally, the full design appears at the higher end of the resolution spectrum,
progressively enhanced with media queries.

http://yiibu.com
http://bkaprt.com/rwd/52/
http://bkaprt.com/rwd/52/

 128 RESPONSIVE WEB DESIGN

The base content and default presentation are mobile, and op-
timized for the very simplest devices "rst. We’ve de"ned this
as “basic” support. Devices with small screens and media query
support are served an enhanced layout—and occasionally—more
complex content. We’ve called this ”mobile.” Finally, the layout
and content are enhanced to re!ect the “desktop” context.

The language is di)erent, of course, but it overlaps beau-
tifully with Nick Finck and Steven Champeon’s original

fig 5.15: No media queries? No JavaScript? This time, no problem.

 BECOMING RESPONSIVE 129

de+nition of “progressive enhancement” (http://bkaprt.com/
rwd/53/):

Rather than hoping for graceful degradation, progressive en-
hancement builds documents for the least capable or di#erently
capable devices "rst, then moves on to enhance those documents
with separate logic for presentation, in ways that don’t place an
undue burden on baseline devices but which allow a richer expe-
rience for those users with modern graphical browser software.

Since Nick and Steven coined the term in 2003, progressive
enhancement has been the hallmark of the responsible ap-
proach to standards-based web design. By beginning with a
foundation of semantic, well-structured markup, styled with a
layer of CSS, and DOM scripting via JavaScript added as need-
ed, we can create compelling experiences in capable browsers,
while ensuring universal access to the content beneath the
design.

Stephen Hay reiterated the need for progressive enhance-
ment as well, in his fantastic essay “There is no Mobile Web”
(http://bkaprt.com/rwd/54/):

Most sites on the web are not built with speci"c mobile use-cases
in mind. However, millions of people access these sites every day
through mobile devices. They access a “normal” (whatever that
means) website through their “mobile” device.

…
To be honest, I can think of a few, but not many use cases of

web sites or apps which are or should be exclusively mobile. It
seems like the Mobile Web allows us to revisit all of the talk of
inclusion, progressive enhancement, and accessibility from years
ago.

Ever have one of those moments where someone else per-
fectly expresses why you believe in something? Stephen’s
essay manages to capture exactly why I’m excited about re-
sponsive web design. Rather than simply siloing our content

http://bkaprt.com/rwd/53/
http://bkaprt.com/rwd/53
http://bkaprt.com/rwd/54/

 130 RESPONSIVE WEB DESIGN

into di)erent, device-speci+c sites, we can use progressive
enhancement to ensure quality access for all, with an enhanced
experience for those devices that are capable of it.

Working with JavaScript

To put this to the test, let’s take a look at the slideshow at the
top of the Robot or Not site (fig 5.16). Currently, the markup
looks like this:

<div class="slides">

 <div class="figure">

 <div class="figcaption">…</div>

 </div><!‐‐ /end .figure ‐‐>

 <ul class="slide‐nav">

 Previous

 Next

</div><!‐‐ /end .slides ‐‐>

fig 5.16: Our slideshow. Or at least, a completely non-functional facsimile thereof.

 BECOMING RESPONSIVE 131

Not too fancy. But also, not too functional: we’ve marked
up the interface for a slideshow, but it isn’t implemented yet.
We’ve included a single slide in our template, as well as the
previous/next navigation. But clicking on those links won’t do
a darned thing.

So, we’ll need to introduce a bit of JavaScript, and bring
some interactivity into our design. But +rst, we need slides!
So, let’s grab some more images, and augment our HTML a
bit:

<div class="slides">

 <div class="figure">

 <div class="figcaption">…</div>

 </div><!‐‐ /end .figure ‐‐>

 <div class="figure">

 <div class="figcaption">…</div>

 </div><!‐‐ /end .figure ‐‐>

 <ul class="slide‐nav">

 Previous

 Next

</div><!‐‐ /end .slides ‐‐>

Let’s drop in four more slides, using the same .figure
markup pattern as before.

This looks a little weird right now, as our slides are cur-
rently just stacked on top of each other (fig 5.17). So to get
our slideshow up and running, we’ll be using a free jQuery
plugin designed by developer Mat Marquis (http://bkaprt.com/
rwd/55/). It’s one of the more robust slideshow scripts I’ve
used. I like it because it works incredibly well with *exible
content; if your slides have di)erent amounts of text or im-
ages in them, this plugin handles them with ease—all without
resorting to convoluted CSS foofery. (Oh, yes. I said “foofery.”
I’m not messing around.)

http://bkaprt.com/rwd/55/
http://bkaprt.com/rwd/55

 132 RESPONSIVE WEB DESIGN

So to work the carousel script into the page, I’m going to
add three new script elements to our HTML:

<script src="jquery.js"></script>

<script src="carousel.js"></script>

<script src="core.js"></script>

Since Mat’s carousel script requires jQuery to run, I’ve
downloaded the library from http://jquery.com and placed it
in the head of the page (jquery.js), followed by Mat’s script
(carousel.js), and a +le called core.js, which is where we’ll
actually write the code for our slideshow.

fig 5.17: New slides: we
add them. Stacked images:
we hate them.

http://jquery.com

 BECOMING RESPONSIVE 133

And actually, it’s fairly easy to do. Inside of core.js, let’s
write the following:

$(document).ready(function() {

 $(".welcome .slides")

 .wrapInner('<div class="slidewrap"> »

 <div id="welcome‐slides" class="slider"> »

 </div></div>')

 .find(".slidewrap")

 .carousel({

 slide: '.figure'

 });

});

Now, if you’re not completely comfortable with JavaScript,
or haven’t used jQuery before, that’s okay. The script above is
doing a few di)erent things:

1. First, it locates the div.slides element inside of the
 .welcome module, using jQuery’s very CSS-friendly selec-
tor syntax. ($(".welcome .slides")).

2. Once it’s located that element, it wraps the contents
with some markup that’s required by the carousel script.
(.wrapInner(…))

3. With that new HTML in place, our script runs the
 .carousel() function, creating the slideshow. And since
we’ve marked up individual slides with the .figure class,
that’s what we’ve told the script to use.

And with those eight lines of JavaScript, we’ve got a working
slideshow (fig 5.18). Success!

Lazily (but intelligently) loading content

Or at least, it’s a starting point. If we disabled JavaScript in
the browser, we’re back to where we were before: with slides
stacked on top of each other, and with a navigation menu
that doesn’t actually do anything. So for any visitor to our site
that doesn’t have JavaScript available to them, the experience

 134 RESPONSIVE WEB DESIGN

quickly becomes decidedly un-great. So let’s address those
issues.

First, let’s remove the previous/next navigation from our
markup, and insert it via JavaScript.

$(document).ready(function() {

 var sNav = [

 '<ul class="slide‐nav">',

 '<a class="prev" »

 href="#welcome‐slides">Previous',

 ' »

 Next',

 ''

].join("");

 $(".welcome .slides")

 .wrapInner('<div class="slidewrap"><div »

 id="welcome‐slides" class="slider"></div></div>')

 .find(".slidewrap")

 .append(sNav)

 .carousel({

 slide: '.figure'

 });

});

fig 5.18: The slideshow lives. It lives!

 BECOMING RESPONSIVE 135

Our code looks quite a bit more complex now, but we’ve
really only introduced one new piece of functionality. First,
we’re declaring a variable called sNav, which stores the HTML
for our slide navigation. Then, just before the carousel()
function is called, we’re inserting that markup into our slide-
show. By using jQuery to insert the navigation into the page,
we’ve ensured that users without JavaScript won’t see it.
Progressive enhancement in action.

Now, that doesn’t solve the problem of our stacked images.
For that, we’re going to get a bit tricky: we’re going remove
all but one of the slides from the page, and put them in a sepa-
rate HTML +le. So now, our page’s source looks considerably
lighter:

<div class="slides">

 <div class="figure">

 <div class="figcaption">…</div>

 </div><!‐‐ /end .figure ‐‐>

</div><!‐‐ /end .slides ‐‐>

However, we’ve created a separate +le (let’s call it slides.
html), and pasted in the markup for our four remaining slides:

<div class="figure">

 <div class="figcaption">…</div>

</div><!‐‐ /end .figure ‐‐>

<div class="figure">

 <div class="figcaption">…</div>

 …

</div><!‐‐ /end .figure ‐‐>

You’ve probably noticed that slides.html isn’t even a valid
HTML document. In fact, it’s more like a markup stub, a mini-
document we can use to store some HTML for later use. In
fact, we’ll just use jQuery to open slides.html and load the
images into the slideshow, like so:

 136 RESPONSIVE WEB DESIGN

$(document).ready(function() {

 $.get("slides.html", function(data) {

 var sNav = [

 '<ul class="slide‐nav">',

 '<a class="prev" href= »

 "#welcome‐slides">Previous',

 ' »

 Next',

 ''

].join("");

 $(".welcome .slides")

 .append(data)

 .wrapInner('<div class="slidewrap"> »

 <div id="welcome‐slides" class="slider"> »

 </div></div>')

 .find(".slidewrap")

 .append(sNav)

 .carousel({

 slide: '.figure'

 });

 });

});

And that’s that. The jQuery .get() function opens our HTML
snippet (slides.html), and inserts its contents into our mod-
ule by using append(). If JavaScript isn’t available, or if jQuery
can’t load that +le, then the user is presented with a single
image at the top of the page: a perfectly acceptable fallback for
our design (fig 5.19).

Further improvements

We’ve augmented our simple slideshow script with consider-
ably more code, but the end result is a much more robust and
accessible experience. We’re not assuming anything about the
capabilities of the browser or device rendering our page: if
JavaScript is available to them, then our slideshow will appear.

slides.html

 BECOMING RESPONSIVE 137

But there’s always room for improvement—and this rough
little prototype is no exception. For example, we could po-
tentially restrict our slideshow to only appear on certain
types of displays, making the script resolution dependent. For
example, if we wanted to prevent it from loading at all on
smaller screens, we could work a simple resolution test into
our script:

if (screen.width > 480) {

 $(document).ready(function() { … });

}

That opening if statement is the JavaScript equivalent of a
min‐width: 480px media query: if the screen is narrower
than 480 pixels, then the enclosed JavaScript won’t +re
(fig 5.20).

And we could re+ne this approach further. For example,
we would ideally use a lightweight JavaScript loader like LabJS
(http://labjs.com/) or Head JS (http://headjs.com/) to dynami-
cally load jQuery, the carousel plugin, and our own custom.
js, perhaps including them only if the user’s screen is above
a certain resolution threshold. That would help ensure that

fig 5.19: No
JavaScript?
No problem.
Our slideshow
degrades to a
single image,
which looks just
grand.

http://labjs.com
http://headjs.com

 138 RESPONSIVE WEB DESIGN

users on smaller screens aren’t saddled with the overhead of
downloading all that JavaScript, especially if we’re keeping the
carousel from loading for them. And while we’re being band-
width-conscientious, I’d probably use Filament Group’s fan-
tastic “responsive images” library (http://bkaprt.com/rwd/56/),
which would allow us to serve lighter, more bandwidth-
friendly images to smaller displays, with the full-sized images
served only to wider screens.

GO FORTH AND BE RESPONSIVE

I mention these enhancements not because they’re necessar-
ily the right approach; in the age of portable 3G hotspots and
wi+-enabled phones, it can be dangerous to automatically
equate a screen’s dimensions with the bandwidth available to
it. But if you need an extra level of resolution awareness in
your work, these tools are available.

Still, I +nd it helpful to keep Luke’s “mobile +rst” philoso-
phy in mind when I’m faced with a particularly involved bit

fig 5.20: We’ve decided that our slideshow will only be available to browsers wider than
480px. Smaller screens get a single image.

http://bkaprt.com/rwd/56/

 BECOMING RESPONSIVE 139

of functionality. If I’m disabling a tricky interface for mobile
users, then why is there value in it for the rest of my audi-
ence? If that sounds like a loaded question, it’s not meant to
be: there aren’t any easy answers here.

Because more than anything, web design is about asking
the right questions. And really, that’s what responsive web de-
sign is: a possible solution, a way to more fully design for the
web’s inherent *exibility. In the +rst chapter, I said that the
ingredients for a responsive design were a *uid grid, *exible
images, and media queries. But really, they’re just the vocabu-
lary we’ll use to articulate answers to the problems our users
face, a framework for ordering content in an ever-increasing
number of devices and browsers.

If we’re willing to research the needs of our users, and ap-
ply those ingredients carefully, then responsive web design is
a powerful approach indeed.

I can’t wait to see the stories you’ll tell with it.

 140 RESPONSIVE WEB DESIGN

ACKNOWLEDGEMENTS

I don’t have the words—or the space—to properly thank
the people that have in*uenced my work, let alone this little
book. Still, I have to try.

First and foremost, I’m impossibly grateful to A Book Apart
for being interested in responsive design, and for o)ering me
the chance to write my +rst solo book. Jason Santa Maria’s
attention to detail and quality is unparalleled. Mandy Brown
is an impossibly incisive editor, and I feel so lucky to have had
her help and patience in shaping this book. And of course,
my heartfelt thanks to Je)rey Zeldman: for his impassioned
writing and tireless work, and for the opportunities they’ve
a)orded me over the years.

If I can form a decent sentence from time to time, it’s be-
cause of Garret Keizer.

Peter-Paul Koch, Bryan and Stephanie Rieger, Jason
Grigsby, and Stephen Hay have taught me much of what I
know about designing for mobile, and improved my thinking
about responsive design in countless subtle, signi+cant ways.
And for any design project, responsive or otherwise, Luke
Wroblewski’s work on “mobile +rst” is invaluable.

Khoi Vinh and Mark Boulton have taught our commu-
nity—and me—much about the history behind our craft.
What’s more, a *uid grid would never have proven feasible
without Richard Rutter’s early research.

If I hadn’t read John Allsopp’s magni+cent “A Dao Of Web
Design” over a decade ago, my understanding of the web
would be drastically di)erent, and this book would have
never happened.

David Sleight, the team at Filament Group—Patty Toland,
Todd Parker, Maggie Costello, and Scott Jehl—and Mat
Marquis provided indispensable feedback on an early draft
of the book. Furthermore, Filament o)ered me the chance to
work on a large-scale responsive redesign as I began writing
this book, which has been a fantastically educational experi-
ence from which both I and the book have bene+tted.

Dan Cederholm’s technical edit was thoughtful, thorough,
and hilarious. Just like him.

 141

I can’t quite articulate how honored I am that Jeremy Keith
agreed to write the foreword. Hell, “honored” doesn’t even
adequately cover it.

My family—my parents, my brothers, my sisters, and my
grandmother—were there for me throughout the writing pro-
cess. I love you guys.

And +nally, to my wife Elizabeth. This book, and every-
thing else, is for her.

ACKNOWLEDGEMENTS

 142 RESPONSIVE WEB DESIGN

RESOURCES

For a more complete history behind the typographic grid, I’d
suggest the following:

Wikipedia’s entry on the canons of page construction:
http://bkaprt.com/rwd/57/
The New Typography by Jan Tschichold (Second Edition,
University of California Press, 2006): http://bkaprt.com/
rwd/58/
Grid Systems in Graphic Design by Josef Müller-Brockmann
(Verlag Niggli AG): http://bkaprt.com/rwd/59/

In looking at how grids apply speci+cally to web design, I’d
suggest:

Ordering Disorder: Grid Principles for Web Design by Khoi
Vinh (New Riders Press, 2010): http://bkaprt.com/rwd/60/
A Practical Guide to Designing Grid Systems for the Web by
Mark Boulton (Five Simple Steps, forthcoming): http://
bkaprt.com/rwd/61/
Mark Boulton’s blog entry, “A Richer Canvas”: http://
bkaprt.com/rwd/62/
The Grid System: http://bkaprt.com/rwd/63/
My article for A List Apart on “Fluid Grids”: http://
bkaprt.com/rwd/64/

Looking for a reference on media queries? While the follow-
ing two links are somewhat tech-y, I think they’re still acces-
sible, fantastic reads:

The W3C’s media query speci+cation: http://bkaprt.com/
rwd/65/
Mozilla’s developer reference on media queries: http://
bkaprt.com/rwd/66/

If you’re working with images and other media in a *exible
context, I recommend checking out:

http://bkaprt.com/rwd/57/
http://bkaprt.com/rwd/58/
http://bkaprt.com/rwd/58/
http://bkaprt.com/rwd/59/
http://bkaprt.com/rwd/60/
http://bkaprt.com/rwd/61/
http://bkaprt.com/rwd/61/
http://bkaprt.com/rwd/62
http://bkaprt.com/rwd/62/
http://bkaprt.com/rwd/63
http://bkaprt.com/rwd/64/
http://bkaprt.com/rwd/65/
http://bkaprt.com/rwd/65/
http://bkaprt.com/rwd/66/
http://bkaprt.com/rwd/66/
http://bkaprt.com/rwd/64/

 143

Filament Group’s “Responsive Images” script: http://bkaprt.
com/rwd/67/, with related blog entries: http://bkaprt.com/
rwd/68/, http://bkaprt.com/rwd/69/
Richard Rutter’s original image resizing experiments:
http://bkaprt.com/rwd/70/
Bryan Rieger’s early experiments with image adaptation:
http://bkaprt.com/rwd/71/

For more information to help you decide when and how to
adopt a responsive approach, I’d recommend:

John Allsopp’s seminal “A Dao of Web Design”: http://
bkaprt.com/rwd/72/
Luke Wroblewski’s articles on “mobile +rst”: http://bkaprt.
com/rwd/47/, with related readings available http://www.
lukew.com/0/archive.asp?tag&mobile.rst
Jeremy Keith’s “One Web”: http://bkaprt.com/rwd/73/and
“Context”: http://bkaprt.com/rwd/74/
Tim Kadlec’s entry on “Responsive Web Design and Mobile
Context”: http://bkaprt.com/rwd/75/
Josh Clark (http://bkaprt.com/rwd/76/) and Jason Grigsby
(http://bkaprt.com/rwd/77/) round up some great discus-
sions to help you decide when a responsive approach is
appropriate, and for which projects. (You should be reading
Josh and Jason’s blogs anyway.)
My own blog entries on “With Good References” (http://
bkaprt.com/rwd/78/) and “To)ee-Nosed” (http://bkaprt.
com/rwd/79/).

RESOURCES

http://bkaprt.com/rwd/67
http://bkaprt.com/rwd/67
http://bkaprt.com/rwd/68
http://bkaprt.com/rwd/68
http://bkaprt.com/rwd/69
http://bkaprt.com/rwd/70
http://bkaprt.com/rwd/71
http://bkaprt.com/rwd/72
http://bkaprt.com/rwd/72
http://bkaprt.com/rwd/47
http://bkaprt.com/rwd/47
http://www.lukew.com/ff/archive.asp?tag&mobilefirst
http://www.lukew.com/ff/archive.asp?tag&mobilefirst
http://bkaprt.com/rwd/73/
http://bkaprt.com/rwd/74
http://bkaprt.com/rwd/75
http://bkaprt.com/rwd/78
http://bkaprt.com/rwd/78
http://bkaprt.com/rwd/79
http://bkaprt.com/rwd/79
http://bkaprt.com/rwd/76/
http://bkaprt.com/rwd/77/

 144 RESPONSIVE WEB DESIGN

REFERENCES

Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Chapter 1

 1 http://www.dolectures.com/speakers/craig-mod/

 2 http://www./ickr.com/photos/carabanderson/3033798968/

 3 http://www.alistapart.com/articles/dao/

 4 http://www.morganstanley.com/institutional/techresearch/mobile_
internet_report122009.html

 5 http://vimeo.com/14899669

 6 http://vimeo.com/14899445

 7 http://www.smartglassinternational.com/

 8 http://vimeo.com/4661618

Chapter 2

 9 http://meyerweb.com/eric/tools/css/reset/

Chapter 3

 10 http://www./ickr.com/photos/uberculture/1385828839/

 11 http://clagnut.com/sandbox/imagetest/

 12 http://www.svendtofte.com/code/max_width_in_ie/

 13 http://msdn.microsoft.com/en-us/library/ms532969.aspx

 14 http://www.dillerdesign.com/experiment/DD_belatedPNG/

 15 http://msdn.microsoft.com/en-us/library/ms532920(VS.85).aspx

 16 http://unstoppablerobotninja.com/entry//uid-images

 17 http://www.yuiblog.com/blog/2008/12/08/imageopt-5/

 18 http://www.alistapart.com/articles/fauxcolumns/

 19 http://stopdesign.com/archive/2004/09/03/liquid-bleach.html

 20 http://www.w3.org/TR/css3-background/#the-background-size

 21 http://srobbin.com/jquery-plugins/jquery-backstretch/

 22 http://www.bbc.co.uk/news/technology-11948680

 23 http://bryanrieger.com/issues/mobile-image-replacement/

http://www.flickr.com/photos/carabanderson/3033798968
http://www.alistapart.com/articles/dao
http://www.morganstanley.com/institutional/techresearch/mobile_internet_report122009.html
http://www.morganstanley.com/institutional/techresearch/mobile_internet_report122009.html
http://vimeo.com/14899669
http://vimeo.com/14899445
http://www.smartglassinternational.com
http://vimeo.com/4661618
http://meyerweb.com/eric/tools/css/reset
http://www.flickr.com/photos/uberculture/1385828839
http://clagnut.com/sandbox/imagetest
http://www.svendtofte.com/code/max_width_in_ie
http://msdn.microsoft.com/en-us/library/ms532969.aspx
http://www.dillerdesign.com/experiment/DD_belatedPNG
http://msdn.microsoft.com/en-us/library/ms532920(VS.85).aspx
http://www.alistapart.com/articles/fauxcolumns
http://stopdesign.com/archive/2004/09/03/liquid-bleach.html
http://www.dolectures.com/speakers/craig-mod/
http://unstoppablerobotninja.com/entry/fluid-images
http://www.yuiblog.com/blog/2008/12/08/imageopt-5/
http://www.w3.org/TR/css3-background/#the-background-size
http://srobbin.com/jquery-plugins/jquery-backstretch/
http://www.bbc.co.uk/news/technology-11948680
http://www.bbc.co.uk/news/technology-11948680

 145

Chapter 4

 24 http://www.w3.org/TR/CSS2/media.html

 25 http://www.alistapart.com/articles/goingtoprint/

 26 http://www.w3.org/TR/CSS21/media.html#media-types

 27 http://www.w3.org/TR/css3-mediaqueries/

 28 http://www.w3.org/TR/css3-mediaqueries/#media1

 29 http://developer.apple.com/library/safari/#documentation/
appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html

 30 https://developer.mozilla.org/en/Mobile/Viewport_meta_tag#Viewport_
basics

 31 http://www.theleagueofmoveabletype.com/fonts/7-league-gothic

 32 http://windows.microsoft.com/ie9

 33 http://ie.microsoft.com/testdrive/HTML5/CSS3MediaQueries/

 34 http://www.quirksmode.org/mobile/#t14

 35 http://blogs.msdn.com/b/iemobile/archive/2011/02/14/ie9-coming-to-
windows-phone-in-2011.aspx

 36 http://www.quirksmode.org/m/css.html#t021

 37 http://code.google.com/p/css3-mediaqueries-js/

 38 https://github.com/scottjehl/Respond

 39 http://37signals.com/svn/posts/2661-experimenting-with-responsive-
design-in-iterations

 40 http://hicksdesign.co.uk/journal/.nally-a-/uid-hicksdesign

 41 http://thethemefoundry.com/shelf/

Chapter 5

 42 http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-
one

 43 http://je0croft.com/blog/2010/aug/06/responsive-web-design-and-mobile-
context/

 44 http://thefonecast.com/News/tabid/62/EntryId/3602/Mobile-shopping-is-
popular-when-watching-TV-says-Orange-UK-research.aspx

 45 http://www.lukew.com/0/entry.asp?1263

 46 http://www./ickr.com/photos/merlin/sets/72157622077100537/

 47 http://www.lukew.com/0/entry.asp?933

 48 http://www.lukew.com/0/entry.asp?1117

REFERENCES

http://www.w3.org/TR/CSS2/media.html
http://www.alistapart.com/articles/goingtoprint
http://www.w3.org/TR/CSS21/media.html
http://windows.microsoft.com/ie9
http://ie.microsoft.com/testdrive/HTML5/CSS3MediaQueries
http://blogs.msdn.com/b/iemobile/archive/2011/02/14/ie9-coming-to-windows-phone-in-2011.aspx
http://blogs.msdn.com/b/iemobile/archive/2011/02/14/ie9-coming-to-windows-phone-in-2011.aspx
https://github.com/scottjehl/Respond
http://37signals.com/svn/posts/2661
http://thethemefoundry.com/shelf
http://thefonecast.com/News/tabid/62/EntryId/3602/Mobile-shopping-is-popular-when-watching-TV-says-Orange-UK-research.aspx
http://thefonecast.com/News/tabid/62/EntryId/3602/Mobile-shopping-is-popular-when-watching-TV-says-Orange-UK-research.aspx
http://www.lukew.com/ff/entry.asp?1263
http://www.flickr.com/photos/merlin/sets/72157622077100537
http://www.lukew.com/ff/entry.asp?933
http://www.lukew.com/ff/entry.asp?1117
http://www.w3.org/TR/CSS21/media.html#media-types
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/#media1
http://developer.apple.com/library/safari/#documentation/appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html
http://developer.apple.com/library/safari/#documentation/appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html
https://developer.mozilla.org/en/Mobile/Viewport_meta_tag#Viewport_basics
https://developer.mozilla.org/en/Mobile/Viewport_meta_tag#Viewport_basics
http://www.theleagueofmoveabletype.com/fonts/7-league-gothic
http://www.quirksmode.org/mobile/#t14
http://www.quirksmode.org/m/css.html#t021
http://code.google.com/p/css3-mediaqueries-js/
http://37signals.com/svn/posts/2661-experimenting-with-responsive-design-in-iterations
http://37signals.com/svn/posts/2661-experimenting-with-responsive-design-in-iterations
http://hicksdesign.co.uk/journal/finally-a-fluid-hicksdesign
http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one
http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one
http://jeffcroft.com/blog/2010/aug/06/responsive-web-design-and-mobile-context/
http://jeffcroft.com/blog/2010/aug/06/responsive-web-design-and-mobile-context/

 146 RESPONSIVE WEB DESIGN

 49 http://chrispederick.com/work/web-developer/

 50 http://www.alistapart.com/articles/smartphone-browser-landscape/

 51 http://www./ickr.com/photos/.lamentgroup/5149016958/

 52 http://yiibu.com/about/site/

 53 http://www.hesketh.com/publications/inclusive_web_design_for_the_
future/

 54 http://www.the-haystack.com/2011/01/07/there-is-no-mobile-web/

 55 http://matmarquis.com/carousel/

 56 http://.lamentgroup.com/lab/responsive_images_experimenting_with_
context_aware_image_sizing/

Resources

 57 http://en.wikipedia.org/wiki/Canons_of_page_construction

 58 http://www.amazon.com/dp/0520250125/

 59 http://www.amazon.com/dp/3721201450/

 60 http://www.amazon.com/gp/product/0321703537/

 61 http://www..vesimplesteps.com/books/practical-guide-designing-grid-
systems-for-the-web

 62 http://www.markboulton.co.uk/journal/comments/a-richer-canvas

 63 http://www.thegridsystem.org/

 64 http://www.alistapart.com/articles//uidgrids/

 65 http://www.w3.org/TR/css3-mediaqueries/

 66 https://developer.mozilla.org/En/CSS/Media_queries

 67 https://github.com/.lamentgroup/Responsive-Images

 68 http://unstoppablerobotninja.com/entry/responsive-images/

 69 http://.lamentgroup.com/lab/responsive_images_experimenting_with_
context_aware_image_sizing/

 70 http://clagnut.com/blog/268/

 71 http://bryanrieger.com/issues/mobile-image-adaptation

 72 http://www.alistapart.com/articles/dao

 73 http://adactio.com/journal/1716/

 74 http://adactio.com/journal/4443/

 75 http://timkadlec.com/2011/03/responsive-web-design-and-mobile-context/

 76 http://globalmoxie.com/blog/mobile-web-responsive-design.shtml

 77 http://www.cloudfour.com/weekend-reading-responsive-web-design-and-
mobile-context/

 78 http://unstoppablerobotninja.com/entry/with-good-references/

 79 http://unstoppablerobotninja.com/entry/to0ee-nosed/

http://www.flickr.com/photos/filamentgroup/5149016958
http://yiibu.com/about/site
http://www.hesketh.com/publications/inclusive_web_design_for_the_future
http://www.hesketh.com/publications/inclusive_web_design_for_the_future
http://matmarquis.com/carousel
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://en.wikipedia.org/wiki/Canons_of_page_construction
http://www.amazon.com/dp/0520250125
http://www.amazon.com/dp/3721201450
http://www.amazon.com/gp/product/0321703537
http://www.thegridsystem.org
http://www.alistapart.com/articles/fluidgrids
https://developer.mozilla.org/En/CSS/Media_queries
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing
http://clagnut.com/blog/268
http://www.alistapart.com/articles/dao
http://adactio.com/journal/1716
http://adactio.com/journal/4443
http://globalmoxie.com/blog/mobile-web-responsive-design.shtml
http://chrispederick.com/work/web-developer/
http://www.alistapart.com/articles/smartphone-browser-landscape/
http://www.the-haystack.com/2011/01/07/there-is-no-mobile-web/
http://www.fivesimplesteps.com/books/practical-guide-designing-grid-systems-for-the-web
http://www.fivesimplesteps.com/books/practical-guide-designing-grid-systems-for-the-web
http://www.markboulton.co.uk/journal/comments/a-richer-canvas
http://www.w3.org/TR/css3-mediaqueries/
https://github.com/filamentgroup/Responsive-Images
http://unstoppablerobotninja.com/entry/responsive-images/
http://bryanrieger.com/issues/mobile-image-adaptation
http://timkadlec.com/2011/03/responsive-web-design-and-mobile-context/
http://www.cloudfour.com/weekend-reading-responsive-web-design-and-mobile-context/
http://www.cloudfour.com/weekend-reading-responsive-web-design-and-mobile-context/
http://unstoppablerobotninja.com/entry/with-good-references/
http://unstoppablerobotninja.com/entry/with-good-references/

 147

37signals 101–102

.get() 136

A

A List Apart 117, 142, 151

Allsopp, John 5, 140, 143

AlphaImageLoader 52–54

Android 98, 103

append() 136

Apple 79, 80

B

background-position 58

background-size 58

BlackBerry 99

Boulton, Mark 14, 140, 142

Bowman, Doug 55

C

Cederholm, Dan 54, 58, 103, 140

Champeon, Steven 128

Cog’aoke 109–110

Croft, Je) 107

css3-mediaqueries.js 99–100

D

Dao De Jing 106

DD_belatedPNG library 52

Diller, Drew 52

display area 75–77

display: none 111

F

Finck, Nick 128

*uid grid 25, 34, 41

font-size 18–21, 73, 74, 84, 105

Frost, Robert 1

G

Galaxy Tab 102

Grid Systems in Graphic Design 14, 142

H

Happy Cog 103, 151

Hay, Stephen 129, 140

Hicks, Jon 104–105

I

initial-scale 80

interactive design review 118

Internet Explorer 7, 47–52

iPad 79, 83, 102

iPhone 74, 79–81

J

Jehl, Scott 99, 140

jQuery 131–137

jQuery Backstretch plugin 58

K

Kindle 102–103, 114

Koch, Peter-Paul 98, 117, 140

L

League Gothic 82, 84

link 73, 75

M

Mann, Merlin 111

margin 27, 29–31, 33–40

Marquis, Mat 131, 140

max-width: 100% 45–53, 59–62

media types 71–74

Meyer, Eric 18

mobile +rst 111–113, 122, 124–127, 138,
140, 143

INDEX

INDEX

css3-mediaqueries.js

 148 RESPONSIVE WEB DESIGN

Mobile Safari 80, 81, 98

Mod, Craig 1

Modernist period 13

Mozilla 80, 98, 142

Müller-Brockmann, Josef 14, 142

N

“Noise to Noise Ratio” Flickr set 111

Nook 102, 114

O

Opera Mini 98

Opera Mobile 98

orientation 77, 78, 79

over*ow 59–61

over*ow: hidden 60, 88

P

padding 33–40, 66, 91

Pearce, James 107

R

rendering surface 75–77

reset stylesheet 17–18

respond.js 99–100, 122

Responsive architecture 7

Rieger, Bryan 62, 127, 140, 143

Rieger, Stephanie 127, 140

Robbin, Scott 58

Romantic period 13

Ruder, Emil 14

Rutter, Richard 45, 59, 140, 143

S

Samsung 102

sizingMethod 52

Stefanov, Stoyan 53

T

target ÷ context = result 20, 31–32,
35, 41

Tofte, Svend 48

Tschichold, Jan 14, 142

typographic grid 15, 142

V

viewport meta element 80

Vinh, Khoi 14, 140, 142

Voltron 116

W

Web Developer Toolbar 116

webOS 98

width 3–4, 6, 15, 26–40

width=device-width 80

Windows Phone 99

Wren, Christopher 7

Wroblewski, Luke 111, 138, 140, 143

Y

Yiibu 127

respond.js

 149

ABOUT A BOOK APART

Web design is about multi-disciplinary mastery and laser fo-
cus, and that’s the thinking behind our brief books for people
who make websites. We cover the emerging and essential
topics in web design and development with style, clarity, and,
above all, brevity—because working designer-developers can’t
a)ord to waste time.

The goal of every title in our catalog is to shed clear light
on a tricky subject, and do it fast, so you can get back to work.
Thank you for supporting our mission to provide profession-
als with the tools they need to move the web forward.

COLOPHON

The text is set in FF Yoga and its companion, FF Yoga Sans,
both by Xavier Dupré. Headlines and cover are set in Titling
Gothic by David Berlow, code excerpts in Consolas by Lucas
de Groot.

ABOUT A BO OK APART

 150 RESPONSIVE WEB DESIGN

ABOUT THE AUTHOR

Ethan Marcotte (http://ethanmarcotte.
com) is a versatile designer/developer
whose work demonstrates a passion
for the intersection of quality code
and compelling design. A resident
of Cambridge, Massachusetts, Ethan
is fortunate to have worked with
such clients as New York Magazine,
Stanford University, the Sundance
Film Festival, and the W3C. More
fun facts: Ethan has a blog (http://

unstoppablerobotninja.com), and blathers incessantly on
Twitter (@beep). Also, he is tall.

Ethan is a contributing author and technical editor at A
List Apart, the magazine for people who make websites. He
is also a popular educator, and has been a featured speaker at
An Event Apart, the SXSW Interactive Festival, Future of Web
Design, and AIGA’s In Control conference.

An experienced author, Ethan collaborated with Happy
Cog founder Je)rey Zeldman on the third edition of Designing
with Web Standards (New Riders, 2009), the classic title that sits
on every savvy designer’s bookshelf. Additionally, he acted as
a contributing author to Handcrafted CSS (New Riders, 2009),
Web Standards Creativity (friends of ED, 2007) and Professional
CSS (Wrox, 2005).

Responsive Web Design is Ethan’s +rst solo book, and he’s
pretty darn excited about that. He’d like to thank you for read-
ing it.

http://ethanmarcotte.com
http://ethanmarcotte.com
http://unstoppablerobotninja.com
http://unstoppablerobotninja.com
http://twitter.com/#!beep

	Table of Contents
	Foreword
	Chapter 1: Our Responsive Web
	Chapter 2: The Flexible Grid
	Chapter 3: Flexible Images
	Chapter 4: Media Queries
	Chapter 5: Becoming Responsive
	Acknowledgements
	Resources
	References
	Index
	About A Book Apart
	Colophon
	About the Author

